Warning: Undefined array key "clientWidth" in /var/www/html/w/includes/Media/SvgHandler.php on line 447

Warning: Undefined array key "clientHeight" in /var/www/html/w/includes/Media/SvgHandler.php on line 448

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 68

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 69

Warning: Undefined array key "clientWidth" in /var/www/html/w/includes/Media/SvgHandler.php on line 447

Warning: Undefined array key "clientHeight" in /var/www/html/w/includes/Media/SvgHandler.php on line 448

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 68

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 69

Warning: Undefined array key "clientWidth" in /var/www/html/w/includes/Media/SvgHandler.php on line 447

Warning: Undefined array key "clientHeight" in /var/www/html/w/includes/Media/SvgHandler.php on line 448

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 68

Deprecated: round(): Passing null to parameter #1 ($num) of type int|float is deprecated in /var/www/html/w/includes/Media/ThumbnailImage.php on line 69
Spectrum and global bifurcation results for nonlinear second-order problem on all of \(\mathbb{R}\) - MaRDI portal

Spectrum and global bifurcation results for nonlinear second-order problem on all of \(\mathbb{R}\) (Q2105335)

From MaRDI portal





scientific article; zbMATH DE number 7628998
Language Label Description Also known as
English
Spectrum and global bifurcation results for nonlinear second-order problem on all of \(\mathbb{R}\)
scientific article; zbMATH DE number 7628998

    Statements

    Spectrum and global bifurcation results for nonlinear second-order problem on all of \(\mathbb{R}\) (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    8 December 2022
    0 references
    In this paper, the authors consider the following second order problem \[ \left\{ \begin{array}{l} -u''(t)+a(t)u(t)=\lambda b(t)f(u(t)),\ t\in\mathbb{R}\\ u(t)\longrightarrow 0\ as\ \left|t\right|\longrightarrow\infty \end{array}\right.\tag{1} \] where \(\lambda>0\) is a parameter, \(a,b\in C(\mathbb{R},]0,\infty[)\) such that \(\lim_{\left|t\right|\longrightarrow\infty}\frac{a(t)}{b(t)}=0\), \(f:\mathbb{R}\longrightarrow\mathbb{R}\) is a continuous function with \(sf(s)>0\) for \(s\neq 0\). For the linear case, i.e., \(f(u)=u\), they investigate the existence of principal eigenvalue of \((1)\). For the nonlinear case, depending on the behavior of \(f\) near \(0\) and \(\infty\), they obtain asymptotic behavior and the existence of homoclinic solutions of \((1)\). The proof of these results is based upon bifurcation technique.
    0 references
    homoclinic solutions
    0 references
    bifurcation
    0 references
    principal eigenvalue
    0 references
    second-order differential equation
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references