On the spectral properties of real antitridiagonal Hankel matrices (Q2105346)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On the spectral properties of real antitridiagonal Hankel matrices
scientific article

    Statements

    On the spectral properties of real antitridiagonal Hankel matrices (English)
    0 references
    8 December 2022
    0 references
    The author gives functional characterizations for the eigenvalues and the eigenvectors of an antitridiagonal matrix. Given a vector \(\mathfrak{a}=(a_1,\ldots,a_n)\in \mathbb{R}^n\) (or \(\mathbb{C}^n\)), the \(n\times n\) anticirculant matrix \(C_{\mathfrak{a}}=[c_{i,j}]\) is defined by \(c_{i,j}=a_{[i+j-1]}\) for \(1\le i,j\le n\) where \([i+j-1]\) is the class of \(i+j-1\) \(\pmod{n}\), for \[C_{\mathfrak{a}}=\begin{pmatrix}a_1&a_2&\ldots&a_n\\ a_2&a_3&\ldots&a_1\\ \vdots &\vdots&\ddots&\vdots\\ a_n&a_1&\ldots&a_{n-1}\end{pmatrix}.\] Set \(\mathfrak{a}_0\) the vector \(\mathfrak{a}\) for which \(a_1=b\), \(a_{n-1}=a, a_n=c\) and \(a_i=0\) otherwise. Let \(R=[r_{i,j}]\) be the rank two \(n\times n\) matrix \[\begin{cases}r_{11}=b, r_{n,n}=a\\ r_{i,j}=0 \quad \text{otherwise.}\end{cases}\] An antitridiagonal matrix \(H\) of dimension \(n\) is written as \(C_{{\mathfrak{a}}_0}-R\). The author applies the eigendecomposition of \(C_{{\mathfrak{a}}_0}\) explicitly to \(H\). The characterization (secular) formula for the eigenvalues is then obtained using results in [\textit{J. Anderson}, Linear Algebra Appl. 246, 49--70 (1996; Zbl 0861.15006)] while the corresponding eigenvector characterization comes from [\textit{J. R. Bunch} et al., Numer. Math. 31, 31--48 (1978; Zbl 0369.65007)].
    0 references
    antitridiagonal matrix
    0 references
    circulant matrices
    0 references
    inverse sum matrix
    0 references

    Identifiers