Twisted Ruelle zeta function at zero for compact hyperbolic surfaces (Q2109397)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Twisted Ruelle zeta function at zero for compact hyperbolic surfaces |
scientific article; zbMATH DE number 7635380
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Twisted Ruelle zeta function at zero for compact hyperbolic surfaces |
scientific article; zbMATH DE number 7635380 |
Statements
Twisted Ruelle zeta function at zero for compact hyperbolic surfaces (English)
0 references
21 December 2022
0 references
Let \(\Gamma\) be a discrete, torsion-free, cocompact subgroup of \(\mathrm{PSL}_2(\mathbb{R})\), \(X=\Gamma \backslash \mathbb{H}^2\) be a compact hyperbolic surface and let \(\chi:\Gamma \to \mathrm{GL}(V_\chi)\) be a finite-dimensional, complex representation of \(\Gamma\). In the present paper, it is proven that the twisted Selberg zeta function \(Z(s,\chi)\) admits a meromorphic continuation to \(\mathbb{C}\) and satisfies the functional equation \[ \frac{Z(s,\chi)}{Z(1-s,\chi)}=\exp \left \lbrack \dim(V_\chi) \mathrm{Vol}\int_0^{s-\frac{1}{2}} r\tan \pi r dr\right \rbrack, \] where the integral is a complex line integral along any curve from \(0\) to \(s-\frac{1}{2}\). Furthermore, The twisted Ruelle zeta function \(R(s, \chi)\) admits a meromorphic continuation to \(\mathbb{C}\) which satisfies the functional equation \[ R(s,\chi) R(-s,\chi)= (2\sin \pi s)^{2(2g-2)\dim V_\chi}. \] Therefore, The behavior of the twisted Ruelle zeta function \(R(s,\chi)\) near \(s = 0\) is given by \[ R(s,\chi)=\pm(2\pi s)^{\dim( V_\chi)(2g-2)}+ \text{ higher order terms}. \]
0 references
twisted Selberg zeta function
0 references
twisted Ruelle zeta function
0 references
non-unitary representations
0 references
Selberg trace formula
0 references
0 references
0 references
0 references
0 references
0.92517245
0 references
0.91756886
0 references
0.9167068
0 references
0.9104226
0 references
0.90785676
0 references
0.9029118
0 references
0.8978815
0 references
0.8942838
0 references
0.88907325
0 references