Continuity of some non-local functionals with respect to a convergence of the underlying measures (Q2111987)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Continuity of some non-local functionals with respect to a convergence of the underlying measures |
scientific article; zbMATH DE number 7643191
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Continuity of some non-local functionals with respect to a convergence of the underlying measures |
scientific article; zbMATH DE number 7643191 |
Statements
Continuity of some non-local functionals with respect to a convergence of the underlying measures (English)
0 references
17 January 2023
0 references
In the article some non-local functionals on the Sobolev space \(W^{1,p}_0(\Omega)\) involving a double integral on \(\Omega\times \Omega\) with respect to a measure \(\mu\) are studied. The authors introduce a notion of convergence of measures on product spaces which implies a stability property in the sense of the \(\Gamma\)-convergence of the corresponding functionals with respect to the weak topology in \(W^{1,p}_0(\Omega)\). Under some additional assumptions, the convergence of the same finctionals in the sense of Mosco convergence in \(W^{1,p}_0(\Omega)\) is also obtained.
0 references
Mosco convergence
0 references
\(\Gamma\)-convergence
0 references
graphons
0 references
non-local functionals
0 references
cut norm
0 references
0 references