On the Chvátal-Janson conjecture (Q2112271)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Chvátal-Janson conjecture |
scientific article; zbMATH DE number 7640056
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Chvátal-Janson conjecture |
scientific article; zbMATH DE number 7640056 |
Statements
On the Chvátal-Janson conjecture (English)
0 references
10 January 2023
0 references
Chvátal conjectured that, if \(X\) is a binomial random variable with parameters \(n\) and \(m/n\), \(m\in\{0,\dots,n\}\), then for \(n\ge 2\), the probability \(q_m:=P(X\le m)\) attains its minimum when \(m\) is the integer closest to \(2n/3\). \textit{S. Janson} [Stat. Probab. Lett. 171, Article ID 109020, 10 p. (2021; Zbl 1457.60015)] established the conjecture for \(n\) large enough. In the present paper the authors prove the conjecture for every \(n\ge 2\).
0 references
binomial distribution
0 references
Chvátal conjecture
0 references
0 references
0 references
0 references