\(p\)-almost Hadamard matrices and \(\lambda\)-planes (Q2114776)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(p\)-almost Hadamard matrices and \(\lambda\)-planes |
scientific article; zbMATH DE number 7490050
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(p\)-almost Hadamard matrices and \(\lambda\)-planes |
scientific article; zbMATH DE number 7490050 |
Statements
\(p\)-almost Hadamard matrices and \(\lambda\)-planes (English)
0 references
15 March 2022
0 references
A square matrix \(H_n\) of degree \(n\) is called \textit{almost Hadamard} if \(U_n:=\frac{H_n}{\sqrt n}\) is orthogonal and it locally maximizes the \(1\)-norm on \(\mathrm{O}(n,\mathbb R)\). A matrix is called \textit{\(p\)-almost Hadamard} for \(p\in[1,2)\) if it locally maximizes the \(p\)-norm on \(\mathrm{O}(n,\mathbb R)\), whereas for \(p\in(2,\infty)\), if it locally minimizes the \(p\)-norm on \(\mathrm{O}(n,\mathbb R)\). The author discusses incidence matrices of \(\lambda\)-planes, i.e., finite projective planes, biplanes, triplanes, and examines which of them are \(p\)-almost Hadamard matrices. He also discusses when orthogonal matrices corresponding to these planes are local minima for the problem: \[\min_{X\in\mathbb R^{n\times n}}\sum_{i,j=1}^n|a_{ij}|^p \text{ where } \sum_{k=1}^na_{ik}a_{kj}=\begin{cases}1\text{ if }i=j\\ 0\text{ otherwise,}\end{cases} \] where \(p>2\).
0 references
Hadamard matrix
0 references
projective planes
0 references
incidence matrix
0 references
quasi-orthogonal matrix
0 references
Mersenne matrix
0 references
optimization problem
0 references
0 references
0 references
0.8790798
0 references
0.8750216
0 references
0.8740372
0 references
0.8696134
0 references
0.8635403
0 references
0 references
0.85770434
0 references