Refined operator inequalities for relative operator entropies (Q2116398)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Refined operator inequalities for relative operator entropies
scientific article

    Statements

    Refined operator inequalities for relative operator entropies (English)
    0 references
    0 references
    16 March 2022
    0 references
    Let \(B(H)\) be the \(C^{*}\)-algebra of bounded linear operators on a complex Hilbert space \(H\). For positive invertible \(A,B\in B(H)\), the relative operator entropy is defined by \[ S(A\vert B)=A^{\frac{1}{2}}\log (A^{-\frac{1}{2}} BA^{-\frac{1}{2}})A^{\frac{1}{2}}. \] The authors give several inequalities for \(S(A\vert B)\) via properties of non-commutative perspective function \(P_{f\Delta h}(A,B)\) defined by \[P_{f\Delta h}(A,B)=h(B)^{\frac{1}{2}}f(h(B)^{-\frac{1}{2}}Ah(B)^{-\frac{1}{2}})h(B)^{\frac{1}{2}}, \] where \(f\) and \(h\) be real continuous functions, see [\textit{A. Ebadian} et al., Proc. Natl. Acad. Sci. USA 108, No. 18, 7313--7314 (2011; Zbl 1256.81020)]. Results hold for the settings of \(C^{*}\)-algebras, real \(C^{*}\)-algebras and JC-Algebras. Moreover, some results give refinements of inequalities by \textit{J. I. Fujii} and \textit{E. Kamei} [Math. Japon. 34, No. 3, 341--348 (1989; Zbl 0699.46048)] and [Math. Japon. 34, No. 4, 541--547 (1989; Zbl 0695.47013)].
    0 references
    operator entropy
    0 references
    JC-algebra
    0 references
    operator inequality
    0 references
    noncommutative perspective
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references