Refined operator inequalities for relative operator entropies (Q2116398)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Refined operator inequalities for relative operator entropies |
scientific article |
Statements
Refined operator inequalities for relative operator entropies (English)
0 references
16 March 2022
0 references
Let \(B(H)\) be the \(C^{*}\)-algebra of bounded linear operators on a complex Hilbert space \(H\). For positive invertible \(A,B\in B(H)\), the relative operator entropy is defined by \[ S(A\vert B)=A^{\frac{1}{2}}\log (A^{-\frac{1}{2}} BA^{-\frac{1}{2}})A^{\frac{1}{2}}. \] The authors give several inequalities for \(S(A\vert B)\) via properties of non-commutative perspective function \(P_{f\Delta h}(A,B)\) defined by \[P_{f\Delta h}(A,B)=h(B)^{\frac{1}{2}}f(h(B)^{-\frac{1}{2}}Ah(B)^{-\frac{1}{2}})h(B)^{\frac{1}{2}}, \] where \(f\) and \(h\) be real continuous functions, see [\textit{A. Ebadian} et al., Proc. Natl. Acad. Sci. USA 108, No. 18, 7313--7314 (2011; Zbl 1256.81020)]. Results hold for the settings of \(C^{*}\)-algebras, real \(C^{*}\)-algebras and JC-Algebras. Moreover, some results give refinements of inequalities by \textit{J. I. Fujii} and \textit{E. Kamei} [Math. Japon. 34, No. 3, 341--348 (1989; Zbl 0699.46048)] and [Math. Japon. 34, No. 4, 541--547 (1989; Zbl 0695.47013)].
0 references
operator entropy
0 references
JC-algebra
0 references
operator inequality
0 references
noncommutative perspective
0 references
0 references
0 references
0 references