New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces (Q2135435)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces |
scientific article; zbMATH DE number 7523085
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces |
scientific article; zbMATH DE number 7523085 |
Statements
New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces (English)
0 references
6 May 2022
0 references
For a domain \(D\subset\mathbb C^n\) and a compact \(K\subset D\), let \(\mathcal A_K^D:=\mathcal O(D,\overline{\mathbb D})|_K\); \(\mathcal A_K^D\) is a compact subset of the Banach space \(\mathcal C(K)\). Define the \textit{Kolmogorov \(m\)-width} \[ d_m:=\inf\{\sup\{\inf\{\|f-g\|: g\in L\}: f\in\mathcal A_K^D\}: L \text{ is a subspace of } \mathcal C(K),\; \dim L<m\}. \] In the case where \(D\) is strictly hyperconvex and \(K\) is non-pluripolar, the authors present a new proof of the asymptotic equality \[ \lim_{m\to+\infty}\frac{-\log d_m}{m^{1/n}}=2\pi(\frac{n!}{C(K,D})^{1/n}, \] where \(C(K,D):=\sup\{\int_K(dd^cu)^n: u\in\mathcal{PSH}(D,(-1,0))\}\) is the relative capacity. The proof does not rely on Zakharyuta's Conjecture.
0 references
Kolmogorov widths
0 references
Kolmogorov numbers
0 references
Kolmogorov \(\epsilon \)-entropy
0 references
pluripotential theory
0 references
capacity
0 references
Toeplitz operators
0 references
Bergman spaces
0 references
Bergman-Weil formula
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references