A local Hopf lemma for the Kohn Laplacian on the Heisenberg group (Q2137691)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A local Hopf lemma for the Kohn Laplacian on the Heisenberg group |
scientific article |
Statements
A local Hopf lemma for the Kohn Laplacian on the Heisenberg group (English)
0 references
16 May 2022
0 references
In this paper, the author is concerned with the boundary unique continuation property for the Kohn Laplacian operator on the Heisenberg group at characteristic points, where the Kohn Laplacian operator is given by \(\Delta_{\mathbb{H}^n}\) \(=\sum\limits^n_{j=1} (X^2_j + Y^2_j)\) with \(X_j=\partial/\partial x_j+2y_j\partial /\partial t\), \(Y_j=\partial/\partial y_j+2x_j\partial /\partial t\), and \(x=(x_1, x_2, \cdots, x_n) \in \mathbb{R}^n\), \(y=(y_1, y_2, \cdots, y_n) \in \mathbb{R}^n\), \(t \in \mathbb{R}^1\). Let \( B^+_r = \{(x, y, t) \in R^{2n+1} : x^2 + y^2 + t^2 < r^2, t > 0\}\), the author proves that if \(u \in C^2({\bar B^+_r})\) is a solution of \(\Delta_{\mathbb{H}^n}=0\) satisfying (i) \( u(x, y, 0) \geq 0\) for \( x^2 + y^2 < r^2\) and (ii) the function \([0, r] \ni t \mapsto u(0, 0, t)\) is flat at \(t = 0\), then \(u(x, y, 0) \equiv 0\) for \(x, y\) being small.
0 references
Heisenberg group
0 references
harmonic functions
0 references
Kohn Laplacian
0 references
unique continuation
0 references
0 references