Two families of compactly supported Parseval framelets in \(L^2( \mathbb{R}^d)\) (Q2155818)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Two families of compactly supported Parseval framelets in \(L^2( \mathbb{R}^d)\) |
scientific article |
Statements
Two families of compactly supported Parseval framelets in \(L^2( \mathbb{R}^d)\) (English)
0 references
15 July 2022
0 references
The authors construct two families of Parseval wavelet frames in \(L^2(R^d)\). The construction involves trigonometric polynomials developed by \textit{P. N. Heller} [SIAM J. Matrix Anal. Appl. 16, No. 2, 502--519 (1995; Zbl 0828.15022)] to obtain refinable functions, the Oblique Extension Principle, and a slight generalization of a theorem of \textit{M.-J. Lai} and \textit{J. Stöckler} [Appl. Comput. Harmon. Anal. 21, No. 3, 324--348 (2006; Zbl 1106.42028)].
0 references
Fourier transform
0 references
unitary extension principle
0 references
refinable function
0 references
dilation matrix
0 references
tight framelet
0 references
0 references
0 references
0 references
0 references