The root distributions of Ehrhart polynomials of free sums of reflexive polytopes (Q2161215)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The root distributions of Ehrhart polynomials of free sums of reflexive polytopes |
scientific article; zbMATH DE number 7567723
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The root distributions of Ehrhart polynomials of free sums of reflexive polytopes |
scientific article; zbMATH DE number 7567723 |
Statements
The root distributions of Ehrhart polynomials of free sums of reflexive polytopes (English)
0 references
4 August 2022
0 references
Summary: In this paper, we study the root distributions of Ehrhart polynomials of free sums of certain reflexive polytopes. We investigate cases where the roots of the Ehrhart polynomials of the free sums of \(A_d^\vee \)'s or \(A_d\)'s lie on the canonical line \(\text{Re}(z)=-\frac{1}{2}\) on the complex plane \(\mathbb{C}\), where \(A_d\) denotes the root polytope of type A of dimension \(d\) and \(A_d^\vee\) denotes its polar dual. For example, it is proved that \(A_m^\vee \oplus A_n^\vee\) with \(\min\{m,n\} \leqslant 1\) or \(m+n \leqslant 7, A_2^\vee \oplus (A_1^\vee)^{\oplus n}\) and \(A_3^\vee \oplus (A_1^\vee)^{\oplus n}\) for any \(n\) satisfy this property. We also perform computational experiments for other types of free sums of \(A_n^\vee \)'s or \(A_n\)'s.
0 references
0.9244891
0 references
0.91996014
0 references
0.8980781
0 references
0.89792883
0 references
0.8843094
0 references
0.8806902
0 references
0.8764698
0 references
0.87241167
0 references
0.87144935
0 references
0 references