Hadamard convolution and area integral means in Bergman spaces (Q2175147)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Hadamard convolution and area integral means in Bergman spaces
scientific article

    Statements

    Hadamard convolution and area integral means in Bergman spaces (English)
    0 references
    0 references
    0 references
    28 April 2020
    0 references
    Let \(f(z)=\sum_{n=0}^\infty a_n z^n\) and \(g(z)=\sum_{n=0}^\infty b_n z^n\) be holomorphic functions on the unit disc \(\mathbb{D}\subset \mathbb{C}\), and let \((f*g)(z)=\sum_{n=0}^\infty a_n b_n z^n\) be the Hadamard product of \(f\) and \(g\). A well-known norm-estimate for \(f*g\) is \(\|f*g\|_{H^q}\le \|f\|_{H^1}\|g\|_{H^q}\), \(1\le q<\infty\), where \(\|f\|_{H^p}^p=\int_{\mathbb{T}}|f(z)|^p\frac{|dz|}{2\pi}\). In this paper the authors obtain norm-estimates of Hadamard products of functions in analytic Besov spaces on \(\mathbb{D}\). For \( 0 < r \le 1 \), let \(f_r(z)=f(rz)\) and let \(E_p(r,f)=\|f_r\|_{A^p}=\left(\int_{\mathbb{D}}|f_r|^p\frac{dA}{\pi}\right)^{1/p}\). For \(\alpha\in \mathbb{R}\), let \(D^\alpha f(z)=\sum_{n=0}^\infty (n+1)^\alpha a_n z^n\) be the fractional derivative of order \(\alpha\) of \(f\). The main result in this paper states that if \(D^\alpha f\in A^p\) and \(D^\beta g\in A^q\), where \( 0< p\le 1\), \(p\le q<\infty\) and \(\alpha,\beta\in\mathbb{R}\), then \[ E_q(r, D^{\alpha+\beta-1}(f*g))\le (1-r)^{2(1-1/p)} \|D^\alpha f\|_{A^p} \|D^\beta g \|_{A^q}. \] In particular, \(\|D^{\alpha+\beta-1}(f*g)\|_{A^q} \le \|D^\alpha f\|_{A^1}\|D^\beta g\|_{A^q}\).\par As a consequence of the above result, the authors give conditions on a sequence \(\{f_m\}_m\) in order that \(\|f_m*g-g\|_{A^q}\to 0\), for all \(g\in A^q\), \(1\le q<\infty\).
    0 references
    0 references
    Hadamard convolution
    0 references
    area integral means
    0 references
    Bergman spaces
    0 references

    Identifiers