New functional equations of finite multiple polylogarithms (Q2179719)

From MaRDI portal
scientific article
Language Label Description Also known as
English
New functional equations of finite multiple polylogarithms
scientific article

    Statements

    New functional equations of finite multiple polylogarithms (English)
    0 references
    0 references
    13 May 2020
    0 references
    For classical multiple polylogarithms, it is well known that \[ \mathrm{Li}_{\underbrace{\scriptstyle 1,\dots,1}_{n}}(t)=\frac{1}{n!}\mathrm{Li}_1(t)^n,\;\text{ for all } n\geq 1. \] In this paper, the author obtains a finite analogue of the above formula for finite multiple polylogarithms of Ono-Yamamoyo type. Denote by $\mathcal{A}_{\mathbb{Z}[t]}=(\prod_p(\mathbb{Z}/p\mathbb{Z})[t])/(\bigoplus_p(\mathbb{Z}/p\mathbb{Z})[t])$. For a positive integer $r$ and an index $\mathbf{k}=(k_1,\dots, k_r)\in (\mathbb{Z}_{\geq 1})^r$, we define a finite multiple polylogarithm of Ono-Yamamoto type by \[ f^{OY}_{\mathcal{A},\mathbf{k}}(t)=\mathop{\sum{}^{\prime}}\limits_{0<l_1,\dots,l_r<p}\frac{t^{l_1+\dots+l_r}}{l_1^{k_1}(l_1+l_2)^{k_2}\dots(l_1+\dots+l_r)^{k_r}}\operatorname{mod} p \] as an element of $\mathcal{A}_{\mathbb{Z}[t]}$, where $\sum{}^{\prime}$ denotes the sum of fractions whose denominators are prime to $p$. Define $\zeta_{\mathcal{A}}^{(i)}(\mathbf{k})$ by \[ \zeta^{(i)}_{\mathcal{A}}(\mathbf{k})=\mathop{\sum{}^{\prime}}\limits_{\substack{0<l_1,\dots,l_r<p\\ (i-1)p<l_1+\dots+l_r<ip}}\frac{1}{l_1^{k_1}(l_1+l_2)^{k_2}\dots(l_1+\dots+l_r)^{k_r}}\;\mathrm{mod}\;p. \] The main theorem of this paper is: Theorem. For a positive integer $n$, we define two elements \[ f_n(t):=\sum_{k=0}^{n-2}\left(\sum_{i=1}^{n-k-1}\zeta_{\mathcal{A}}^{(i)}(\{1\}^{n-k-2},2)t^{i \mathbf{p}} \right)f_{\mathcal{A},\{1\}^k}^{OY}(t) \] and \[ g_n(t):=\sum_{k=0}^{n-2}\left(\sum_{i=1}^{n-k-2}\zeta_{\mathcal{A}}^{(i)}(\{1\}^{n-k-2})t^{i \mathbf{p}} \right)f_{\mathcal{A},(2,\{1\}^k)}^{OY}(t) \] of $\mathcal{A}_{\mathbb{Z}[t]}$. Here, we understand that these elements are equal to $0$ if the sums are empty. Then we have \[ f_{\mathcal{A},\{1\}^n}^{OY}(t)=\frac{1}{n!}f_{\mathcal{A},1}^{OY}(t)^n+\frac{1}{n!}\sum_{k=1}^n(k-1)!(f_k(t)+g_k(t))f_{\mathcal{A},1}^{OY}(t)^{n-k}. \] By using the above theorem, the author also obtains a functional equation for $f_{\mathcal{A},{\{1\}}^n}(t)$.
    0 references
    0 references
    finite multiple polylogarithm
    0 references
    functional equation
    0 references
    shuffle relation
    0 references

    Identifiers