Properties and applications of the distance functions on open sets of the Euclidean space (Q2191894)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Properties and applications of the distance functions on open sets of the Euclidean space
scientific article

    Statements

    Properties and applications of the distance functions on open sets of the Euclidean space (English)
    0 references
    26 June 2020
    0 references
    Let \(\Omega \subset {\mathbb{R}^n}\) with \(\Omega \neq {\mathbb{R}^n}\) (\(n>1\)), \(\delta (x) := \inf_{y\in {\mathbb{R}^n} \setminus \Omega} \{ |x-y|\}\) for \(x \in \Omega\) and \(\nabla u(x)\) be the gradient vector for \(u \in C_0^1 (\Omega)\). Let \(S(\Omega) : = \{ x\in \Omega \mid \delta \text{ is not differentiable at } x \}\) and \(\nabla \delta\) be a vector function defined on \(\Omega \setminus S(\Omega)\) such that \[ \delta (x+h) - \delta (x) = \nabla \delta (x) \cdot h + o(|h|)\] for \(x+h \in \Omega\) and \(|h|\to 0\). The author obtains the following: (1) For a convex domain \(\Omega\) and \(p\in [1, \infty)\), \(s\in (1, \infty)\), the following inequality holds \[ \int_{\Omega} \frac{|\nabla u(x) \cdot \nabla \delta(x) |^p } {\delta(x)^{s-p}} dx \ge \frac{(s-1)^p}{p^p} \int_{\Omega} \frac{|u(x)|^p} {\delta(x)^s} dx \quad \forall u \in C_0^1 (\Omega),\] where the constant \(\frac{(s-1)^p}{p^p}\) is sharp, which generalizes the result given by \textit{M. Marcus} et al. [Trans. Am. Math. Soc. 350, No. 8, 3237--3255 (1998; Zbl 0917.26016)]. (2) Let \(\lambda_0\) be the first positive root of the equation \(J_0(t) -2 t J_1 (t) =0\), where \(J_0\) and \(J_1\) are the Bessel functions of order 0 and 1, respectively. For a convex domain \(\Omega\) such that \(\delta_0(\Omega):= \sup_{x\in \Omega} \delta (x) <\infty\) and for a function \(u \in C_0^1 (\Omega)\), the following inequality holds \[ \int_{\Omega}|\nabla u(x) \cdot \nabla \delta(x) |^2 dx \ge \frac{1}{4} \int_{\Omega} \frac{|u(x)|^2} {\delta(x)^2} dx + \frac{\lambda_0^2}{\delta_0(\Omega)^2} \int_{\Omega} |u(x)|^2 dx ,\] where the constant \(\frac{1}{4}\) is sharp and the constant \(\frac{\lambda_0^2}{\delta_0(\Omega)^2}\) is optimal, which improves the result given by \textit{F. G. Avkhadiev} and \textit{K. J. Wirths} [ZAMM, Z. Angew. Math. Mech. 87, No. 8--9, 632--642 (2007; Zbl 1145.26005)]. (3) For an open set \(\Omega\) and \(p\in [1, \infty)\), \(s\in [n, \infty)\), the following inequality holds \[ \int_{\Omega} \frac{|\nabla u(x) \cdot \nabla \delta(x) |^p } {\delta(x)^{s-p}} dx \ge \frac{(s-n)^p}{p^p} \int_{\Omega} \frac{|u(x)|^p} {\delta(x)^s} dx \quad \forall u \in C_0^1 (\Omega),\] where the constant \(\frac{(s-n)^p}{p^p}\) is optimal, which improves the result given by \textit{F. G. Avkhadiev} [Lobachevskii J. Math. 21, 3--31 (2006; Zbl 1120.26008)]. The results are useful for researchers on Hardy-type inequalities.
    0 references
    distance function
    0 references
    convex domain
    0 references
    Hardy-type inequality
    0 references
    approximation of open set
    0 references
    Rademacher theorem
    0 references
    0 references
    0 references

    Identifiers