Limiting laws for divergent spiked eigenvalues and largest nonspiked eigenvalue of sample covariance matrices (Q2196219)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Limiting laws for divergent spiked eigenvalues and largest nonspiked eigenvalue of sample covariance matrices
scientific article

    Statements

    Limiting laws for divergent spiked eigenvalues and largest nonspiked eigenvalue of sample covariance matrices (English)
    0 references
    0 references
    28 August 2020
    0 references
    Let \(\mathbf{Y}=\mathbf{\Gamma X}\) be the data matrix, where \(\mathbf{X}\) be a \((p+l)\times n\) random matrix whose entries are independent with mean means and unit variances and \(\mathbf{\Gamma}\) is a \(p\times(p+l)\) deterministic matrix under condition \(l/p\rightarrow0\). Let \(\mathbf{\Sigma}=\mathbf{\Gamma}\mathbf{\Gamma}^\intercal\) be the population covariance matrix. The sample covariance matrix in such a case is \[ S_n=\frac{1}{n}\mathbf{Y}\mathbf{Y}^\intercal=\frac{1}{n}\mathbf{\Gamma X}\mathbf{X}^\intercal\mathbf{\Gamma}^\intercal. \] Let \(\mathbf{V}\mathbf{\Lambda}^{1/2}\mathbf{U}\) denote the singular value decomposition of matrix \(\mathbf{\Gamma}\), where \(\mathbf{V}\) and \(\mathbf{U}\) are orthogonal matrices and \(\mathbf{\Lambda}\) is a diagonal matrix consisting in descending order eigenvalues \(\mu_1\geqslant\mu_2\geqslant\ldots\geqslant\mu_p\) of matrix \(\mathbf{\Sigma}\). Authors of the paper suppose that there are \(K\) spiked eigenvalues that are separated from the rest. They assume that eigenvalues \(\mu_1\geqslant\ldots\geqslant\mu_K\) tends to infinity, while the other eigenvalues \( \mu_{K+1}\geqslant\ldots\geqslant\mu_p\) are bounded. In the paper, the asymptotic behaviour is considered of the spiked eigenvalues and the largest non-spiked eigenvalue. The limiting normal distribution for the spiked sample eigenvalues is established. The limiting \textit{Tracy-Widom} law for the largest non-spiked eigenvalues is obtained. Estimation of the number of spikes and the convergence of the leading eigenvectors are considered.
    0 references
    extreme eigenvalues
    0 references
    asymptotic distribution
    0 references
    factor model
    0 references
    principal component analysis
    0 references
    sample covariance matrix
    0 references
    spiked covariance matrix model
    0 references
    Tracy-Widom distribution
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references