New estimate for Kloosterman sums with primes (Q2197236)

From MaRDI portal
scientific article
Language Label Description Also known as
English
New estimate for Kloosterman sums with primes
scientific article

    Statements

    New estimate for Kloosterman sums with primes (English)
    0 references
    0 references
    0 references
    31 August 2020
    0 references
    Let \(q\) be a positive integer. Let \(a\) be an integer such that \((a,q)=1\). For an integer \(n\) with \((n,q)=1\), let \(\overline{n}\) denote the inverse of \(n\) modulo \(q\), that is \(n\overline{n}\equiv1\bmod q\). For \(X>0\), the Kloosterman sum over primes is given by \begin{align*} T_{q}(X):=\sum_{\substack{n\leq X\\ (n,q)=1}}\Lambda(n)e_q(a\overline{n}), \end{align*} where \(\Lambda(n)\) is the von Mangoldt function, and \(e_q(n):=\exp\left(\frac{2\pi i n}{q}\right)\).\\ In the paper under review, the authors prove nontrivial estimates for \(T_q(X)\), for large values of the modulus \(q\), when \(q^{1/2+\varepsilon}\leq X\leq q^{2/3}\) and when \(q^{5/8+\varepsilon}\leq X\leq q^{3/2}\). The results combined with the estimates proved by \textit{Fouvry} and \textit{I. E. Shparlinski} [Acta Arith. 150, No. 3, 285--314 (2011; Zbl 1243.11093)] for the range \(q^{3/4}\ll X\ll q^{4/3}\) is given in the following main result of the paper. Theorem. Let \(0<\delta<1/100\) and \(0<\varepsilon\leq 1/6\) be arbitrarily small fixed numbers, let \(q\geq q_0(\delta, \varepsilon)\), \(a\) be an integers with \((a,q)=1\), and let \(q^{1/2+\varepsilon}\leq X\leq q^{3/2}\). Then the estimate \begin{align*} T_{q}(X)\ll Xq^{\delta}\Delta \end{align*} holds where \begin{align*} \Delta=\begin{cases} (Xq^{-1/2})^{-\alpha}\quad &\text{if \(q^{1/2+\varepsilon}\leq X\leq q^{\beta}\)},\\ (Xq^{-5/8})^{-4/19}\quad &\text{if \(q^{\beta}\leq X\leq q^{21/26}\)},\\ (Xq^{-1/2})^{-1/8}\quad &\text{if \(q^{21/26}\leq X\leq q^{9/10}\)},\\ (Xq^{-3/4})^{-1/3}\quad &\text{if \(q^{9/10}\leq X\leq q^{12/13}\)},\\ X^{-1/16}\quad &\text{if \(q^{12/13}\leq X\leq q^{3/2}\)}, \end{cases} \end{align*} and \begin{align*} \alpha=\frac{1}{8}(29-5\sqrt{33})=0.034648\dots, \quad\quad \beta=\frac{4077+95\sqrt{33}}{7116}=0.649625\dots\, . \end{align*}
    0 references
    0 references
    Kloosterman sums
    0 references
    prime numbers
    0 references
    inverse residues
    0 references

    Identifiers