Generating functions for multiple zeta star values (Q2198362)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Generating functions for multiple zeta star values |
scientific article |
Statements
Generating functions for multiple zeta star values (English)
0 references
10 September 2020
0 references
The following generating function was determined for the zeta-star values \(\zeta^{\star}\left(\{2\}^{a}, 3,\{2\}^{b}\right)\): \[\sum_{a, b \geq 0} \zeta^{\star}\left(\{2\}^{a}, 3,\{2\}^{b}\right) x^{2 a} y^{2 b}\] \[\quad=-2 \sum_{j=1}^{\infty} \frac{(-1)^{j} j}{\left(j^{2}-x^{2}\right)\left(j^{2}-y^{2}\right)}-4 \sum_{j=1}^{\infty} \frac{(-1)^{j}}{j^{2}-x^{2}} \sum_{k=1}^{j-1} \frac{k}{k^{2}-y^{2}}.\] The authors generalize this result to include generating functions of multiple zeta star values with an arbitrary number of blocks of twos. Similar results are deduced for \[\zeta^{\star}\left(\{2\}^{a_{0}+1}, 1,\{2\}^{a_{1}}, \ldots, 1,\{2\}^{a_{d}}\right),\] for \[\zeta^{*}\left(\{2\}^{a_{0}+1}, 1,\{2\}^{a_{1}}, \ldots, 1,\{2\}^{a_{d}}, 1\right),\] and for other zeta-star values, too.
0 references
multiple zeta star value
0 references
multiple zeta value
0 references
generating function
0 references
Euler sum
0 references
0 references
0 references
0 references