Generating functions for multiple zeta star values (Q2198362)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Generating functions for multiple zeta star values
scientific article

    Statements

    Generating functions for multiple zeta star values (English)
    0 references
    10 September 2020
    0 references
    The following generating function was determined for the zeta-star values \(\zeta^{\star}\left(\{2\}^{a}, 3,\{2\}^{b}\right)\): \[\sum_{a, b \geq 0} \zeta^{\star}\left(\{2\}^{a}, 3,\{2\}^{b}\right) x^{2 a} y^{2 b}\] \[\quad=-2 \sum_{j=1}^{\infty} \frac{(-1)^{j} j}{\left(j^{2}-x^{2}\right)\left(j^{2}-y^{2}\right)}-4 \sum_{j=1}^{\infty} \frac{(-1)^{j}}{j^{2}-x^{2}} \sum_{k=1}^{j-1} \frac{k}{k^{2}-y^{2}}.\] The authors generalize this result to include generating functions of multiple zeta star values with an arbitrary number of blocks of twos. Similar results are deduced for \[\zeta^{\star}\left(\{2\}^{a_{0}+1}, 1,\{2\}^{a_{1}}, \ldots, 1,\{2\}^{a_{d}}\right),\] for \[\zeta^{*}\left(\{2\}^{a_{0}+1}, 1,\{2\}^{a_{1}}, \ldots, 1,\{2\}^{a_{d}}, 1\right),\] and for other zeta-star values, too.
    0 references
    multiple zeta star value
    0 references
    multiple zeta value
    0 references
    generating function
    0 references
    Euler sum
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references