On the specification of multivariate association measures and their behaviour with increasing dimension (Q2222230)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On the specification of multivariate association measures and their behaviour with increasing dimension
scientific article

    Statements

    On the specification of multivariate association measures and their behaviour with increasing dimension (English)
    0 references
    0 references
    0 references
    0 references
    26 January 2021
    0 references
    The authors consider the multivariate association measures which discover the tendency of the components of a \(d\)-variate random vector \(X = (X_1,\ldots, X_d)\) to simultaneously take large or small values. The interest is to elaborate on the generalization of bivariate association measures, namely Spearman's rho, Kendall's tau, Blomqvist's beta and Gini's gamma, for a general dimension \(d\geq 2\). Desirable properties and axioms for such generalizations are discussed. Existing generalizations are evaluated with respect to the axiom set. For a \(d\)-variate Gini's gamma, a simplified formula is developed, making its analytical computation easier. For Archimedean and meta-elliptical copulas the asymptotic behaviour when the dimension \(d\) increases is studied. Nonparametric estimation of the considered generalizations is reviewed and a nonparametric estimator of the multivariate Gini's gamma is introduced. The practical use of multivariate association measures is illustrated on a real data example.
    0 references
    0 references
    Archimedean copulas
    0 references
    association measures
    0 references
    copulas
    0 references
    meta-elliptical copulas
    0 references
    nonparametric estimation
    0 references
    Environmental Quality Index (EQI)
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references