The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\) (Q2239329)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\) |
scientific article |
Statements
The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\) (English)
0 references
3 November 2021
0 references
Suppose that \(\alpha\) be a real number and \(e(n\alpha)=\exp\{2\pi\textbf{i}n\alpha\}\) for natural numbers \(n\). The authors of the paper derive an upper bound for the sum \[ \sum_{n\leqslant x}a(n)e(n\alpha), \] where \(a\) be multiplicative arithmetic function satisfying certain requirements. Using deeper methods, the authors get a non-trivial uniform estimates for sums \[ \sum_{n\leqslant x}a(n)e(n^k\alpha),\ \ \sum_{n\leqslant x}a(n)\mu(n)e(n^k\alpha), \] where \(k\geqslant 1\), \(\mu\) is the Möbius function, and \(\{a(n)\}, n\in\mathbb{N},\) are the Dirichlet coefficients of a certain \(L\)-function. The special attention is paid to \(L\)-functions of automorphic cups forms on \(\mathrm{GL}_m\) over \(\mathbb{Q}\) with \(m\geqslant 2\).
0 references
Bourgain-Sarnak-Ziegler theorem
0 references
exponential sums
0 references
automorphic \(L\)-function
0 references
Sarnak's conjecture
0 references
0 references
0 references