The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\) (Q2239329)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\)
scientific article

    Statements

    The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\) (English)
    0 references
    0 references
    0 references
    3 November 2021
    0 references
    Suppose that \(\alpha\) be a real number and \(e(n\alpha)=\exp\{2\pi\textbf{i}n\alpha\}\) for natural numbers \(n\). The authors of the paper derive an upper bound for the sum \[ \sum_{n\leqslant x}a(n)e(n\alpha), \] where \(a\) be multiplicative arithmetic function satisfying certain requirements. Using deeper methods, the authors get a non-trivial uniform estimates for sums \[ \sum_{n\leqslant x}a(n)e(n^k\alpha),\ \ \sum_{n\leqslant x}a(n)\mu(n)e(n^k\alpha), \] where \(k\geqslant 1\), \(\mu\) is the Möbius function, and \(\{a(n)\}, n\in\mathbb{N},\) are the Dirichlet coefficients of a certain \(L\)-function. The special attention is paid to \(L\)-functions of automorphic cups forms on \(\mathrm{GL}_m\) over \(\mathbb{Q}\) with \(m\geqslant 2\).
    0 references
    Bourgain-Sarnak-Ziegler theorem
    0 references
    exponential sums
    0 references
    automorphic \(L\)-function
    0 references
    Sarnak's conjecture
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references