Homology of quantum linear groups (Q2240601)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Homology of quantum linear groups
scientific article

    Statements

    Homology of quantum linear groups (English)
    0 references
    0 references
    0 references
    4 November 2021
    0 references
    In this paper, the authors compute the Hochschild homology of some quantum algebras, including the standard versions of quantum monoids \(M_{q}\left( n\right) \), the quantum general linear groups \(GL_{q}\left( n\right) \), and the quantum special linear groups \(SL_{q}\left( n\right) \) for \(n\geq1\). More explicitly, a nonzero \(q\) is fixed in a ground field \(k\) such that \(q\) is not a root of unity, and the coefficient \(k\)-bimodule \(_{f_{q,n}^{-1}}k\) considered for the homology is the 1-dimensional \(k\) equipped with the actions \(x_{ij}\vartriangleright1=f_{q,n}^{-1}\left( x_{ij}\right) :=\delta _{ij}q^{\left( n+1\right) -2i}\) and \(1\vartriangleleft x_{ij}=\delta_{ij}\) for the canonical generators \(x_{ij}\) of \(M_{q}\left( n\right) \) arising from the modular pair in involution \(\left( f_{q,n}^{-1},1\right) \) for the Hopf algebra \(H=GL_{q}\left( n\right) \) (or analogously for \(SL_{q}\left( n\right) \)) defined by the character \(f_{q,n}^{-1}:H\rightarrow k\) and the group-like element \(1\in H\). It is shown that the homology group \(H_{\ell}\left( M_{q}\left( n\right) ,_{f_{q,n}^{-1}}k\right) =H_{\ell}\left( GL_{q}\left( n\right) ,_{f_{q,n}^{-1}}k\right) \) is isomorphic to the direct sum of \(H_{\ell }\left( SL_{q}\left( n\right) ,_{f_{q,n}^{-1}}k\right) \) and \(H_{\ell -1}\left( SL_{q}\left( n\right) ,_{f_{q,n}^{-1}}k\right) \) for \(\ell\geq 0\). Furthermore, explicit calculations are carried out for \(M_{q}\left( n\right) \), \(GL_{q}\left( n\right) \), and \(SL_{q}\left( n\right) \) in the cases of \(n=2,3,4\) with their Betti numbers tabulated.
    0 references
    quantum groups
    0 references
    Hochschild homology
    0 references
    Betti number
    0 references
    modular pair in involution
    0 references
    Hopf algebra
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references