Smooth sums over smooth \(k\)-free numbers and statistical mechanics (Q2249145)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Smooth sums over smooth \(k\)-free numbers and statistical mechanics |
scientific article |
Statements
Smooth sums over smooth \(k\)-free numbers and statistical mechanics (English)
0 references
9 July 2014
0 references
Let \(k\geqslant 2\) be an integer number. A number \(n\) is called \(k\)-free if \(p^k\nmid n\) for every prime number \(p\). The paper is devoted to the study of the asymptotic behavior of the following smooth sum \[ \sum_{\substack{ n \text{ is \(k\)-free} \\ p|n \;\Rightarrow\;p\leqslant N}} f\left(\frac{\log n}{\log N}\right)\frac{\alpha^{\Omega(n)}}{n} \] as \(N\rightarrow\infty\). Here \(k\geqslant 2\), \(\alpha\in \mathbb{C}\) and a bounded function \(f:\mathbb{R}\rightarrow\mathbb{C}\) are fixed, while \(\Omega(n)\) denote the number of prime divisors of \(n\), counted with multiplicity.
0 references
\(k\)-free number
0 references
smooth number
0 references
smooth sum
0 references
average order
0 references
arithmetic function
0 references
\(\alpha\)-convolution
0 references
the Dickman-de Bruin distribution
0 references
characteristic function
0 references
weak convergence
0 references