Deficiency values for the solutions of differential equations with branching point (Q2260870)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Deficiency values for the solutions of differential equations with branching point |
scientific article |
Statements
Deficiency values for the solutions of differential equations with branching point (English)
0 references
12 March 2015
0 references
Let \(A_{b}\) denote the ring of all functions analytic in \(H=\{z:r_{0}\leq \left| z\right| <+\infty \}\) with the unique singular point \(\infty ,\) and let \(M_{b}\) denote the least field such that \(A_{b}\subset \) \(M_{b}\). For a function \(\varphi \in M_{b}\), we use the notation \(\varphi \left( z\right) ,\) \(z\in H\). For arbitrary \(\alpha ,\) \( \beta \) such that \(-\infty <\alpha <\beta <+\infty \), let \[ \varphi \left( z\right) ,\text{ }z\in g_{\alpha \beta }:=\left\{ z=re^{i\theta }:\alpha \leq \theta \leq \beta ,\text{ }r_{0}\leq r<+\infty \right\}, \] denote a single-valued branch of the function \(\varphi \in M_{b}\) in an angular domain \(g_{\alpha \beta }\) on the Riemann surface of the analytic function \(\varphi \left( z\right) ,\) \(z\in H\). Let \(k=\frac{\pi }{\beta -\alpha }\) and \(\ln ^{+}x=\max \left( \ln x,0\right) \) \(\left( x\geq 0\right) .\) The Nevanlinna characteristics of the branch \(\varphi \left( z\right) ,\) \(z\in g_{\alpha \beta }\), are defined as follows: \[ A_{\alpha \beta }\left( r,\varphi \right) =\frac{k}{\pi }\underset{r_{0}}{ \overset{r}{\int }}\left( \frac{1}{t^{k+1}}-\frac{t^{k-1}}{r^{2k}}\right) \left[ \ln ^{+}\left| \varphi \left( te^{i\alpha }\right) \right| +\ln ^{+}\left| \varphi \left( te^{i\beta }\right) \right| \right] dt\geq 0, \] \[ B_{\alpha \beta }\left( r,\varphi \right) =\frac{2k}{\pi r^{k}}\underset{ \alpha }{\overset{\beta }{\int }}\ln ^{+}\left| \varphi \left( re^{i\theta }\right) \right| \sin \left( k\left( \theta -\alpha \right) \right) d\theta \geq 0, \] \[ C_{\alpha \beta }\left( r,\varphi \right) =2k\underset{r_{0}}{\overset{r}{ \int }}c_{\alpha \beta }\left( t,\varphi \right) \left( \frac{1}{t^{k+1}}+ \frac{t^{k-1}}{r^{2k}}\right) dt\geq 0, \] where the function \(c_{\alpha \beta }\left( t,\varphi \right) \) is a counting function of poles of the branch \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) which is defined as \[ c_{\alpha \beta }\left( t,\varphi \right) =c_{\alpha \beta }\left( t,\infty ,\varphi \right) =\underset{\alpha \leq \psi _{n}\leq \beta }{\underset{ r_{0} <\left| \rho _{n}\right| \leq t}{\sum }} \sin \left( k\left( \psi _{n}-\alpha \right) \right) , \] where \(\rho _{n}e^{i\psi _{n}}\) are the poles of the function \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) counting with their multiplicities, and \[ S_{\alpha \beta }\left( r,\varphi \right) =A_{\alpha \beta }\left( r,\varphi \right) +B_{\alpha \beta }\left( r,\varphi \right) +C_{\alpha \beta }\left( r,\varphi \right) . \] For \(a\in \overline{\mathbb{C}}=\mathbb{C}\cup \left\{ \infty \right\} ,\) the defect \(\delta _{\alpha \beta }\left( a,\varphi \right) \) of a single-valued function \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) at the point \(a\) is defined as \[ \delta _{\alpha \beta }\left( a\right) =\delta _{\alpha \beta }\left( a,\varphi \right) =\underset{r\rightarrow +\infty }{\lim \inf }\frac{ A_{\alpha \beta }\left( r,\frac{1}{\varphi -a}\right) +B_{\alpha \beta }\left( r,\frac{1}{\varphi -a}\right) }{S_{\alpha \beta }\left( r,\varphi \right) }. \] If \(\delta _{\alpha \beta }\left( a\right) >0\), then \(a\) is called the deficiency value of the function \(\varphi \in M_{b}\). We say that a function \(\varphi \in M_{b}\) is of finite order of growth \(\rho ,\) if \[ \rho =\underset{\forall \alpha ,\beta }{\sup }\underset{r\rightarrow +\infty }{\lim \sup }\frac{\ln ^{+}S_{\alpha \beta }\left( r,\varphi \right) }{\ln r} <+\infty \text{ }\left( -\infty <\alpha <\beta <+\infty \right) . \] In this paper under review, the authors investigate the distribution of values of the solutions to the algebraic differential equation \[ P\left( z,\varphi ,\varphi ^{\prime },\cdots ,\varphi ^{\left( s\right) }\right) =\overset{n}{\underset{j=0}{\sum }}\underset{j=k_{0}+\cdots +k_{s}} { \sum }a_{k_{0}\cdots k_{s}}(z)\left( \varphi \right) ^{k_{0}}\left( \varphi ^{\prime }\right) ^{k_{1}}\cdot \cdot \cdot \left( \varphi ^{\left( s\right) }\right) ^{k_{s}}=0, \tag{1} \] where \(a_{k_{0}\cdots k_{s}}\in \) \(M_{b}\). The main result of the paper states as follows: Let \(\varphi \in M_{b}\) be a solution of \(\left( 1\right) \) with finite order such that \[ S_{\alpha \beta }\left( r,\varphi \right) \neq O\left( \overset{n}{\underset{ j=0}{\sum }}\underset{j=k_{0}+\cdots +k_{s}}{\sum }S_{\alpha \beta }\left( r,a_{k_{0}\cdots k_{s}}\right) \right) . \] If \(a\neq \infty \) and \(\delta _{\alpha \beta }\left( a\right) >0,\) then the following identity \[ P\left( z,a,0,\cdots ,0\right) \equiv 0,\text{ }z\in H \] holds. If \(P\left( z,a,0,\cdots ,0\right) \not\equiv 0\) in the collection of variables \(z\) and \(a\), then only finitely many values of \(a\) can be deficiency values for the solutions \(\varphi \in M_{b}\) of finite order.
0 references
analytic functions
0 references
order of growth, Nevanlinna characteristics, algebraic differential equation, deficiency value
0 references
0 references