Deficiency values for the solutions of differential equations with branching point (Q2260870)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Deficiency values for the solutions of differential equations with branching point
scientific article

    Statements

    Deficiency values for the solutions of differential equations with branching point (English)
    0 references
    0 references
    0 references
    12 March 2015
    0 references
    Let \(A_{b}\) denote the ring of all functions analytic in \(H=\{z:r_{0}\leq \left| z\right| <+\infty \}\) with the unique singular point \(\infty ,\) and let \(M_{b}\) denote the least field such that \(A_{b}\subset \) \(M_{b}\). For a function \(\varphi \in M_{b}\), we use the notation \(\varphi \left( z\right) ,\) \(z\in H\). For arbitrary \(\alpha ,\) \( \beta \) such that \(-\infty <\alpha <\beta <+\infty \), let \[ \varphi \left( z\right) ,\text{ }z\in g_{\alpha \beta }:=\left\{ z=re^{i\theta }:\alpha \leq \theta \leq \beta ,\text{ }r_{0}\leq r<+\infty \right\}, \] denote a single-valued branch of the function \(\varphi \in M_{b}\) in an angular domain \(g_{\alpha \beta }\) on the Riemann surface of the analytic function \(\varphi \left( z\right) ,\) \(z\in H\). Let \(k=\frac{\pi }{\beta -\alpha }\) and \(\ln ^{+}x=\max \left( \ln x,0\right) \) \(\left( x\geq 0\right) .\) The Nevanlinna characteristics of the branch \(\varphi \left( z\right) ,\) \(z\in g_{\alpha \beta }\), are defined as follows: \[ A_{\alpha \beta }\left( r,\varphi \right) =\frac{k}{\pi }\underset{r_{0}}{ \overset{r}{\int }}\left( \frac{1}{t^{k+1}}-\frac{t^{k-1}}{r^{2k}}\right) \left[ \ln ^{+}\left| \varphi \left( te^{i\alpha }\right) \right| +\ln ^{+}\left| \varphi \left( te^{i\beta }\right) \right| \right] dt\geq 0, \] \[ B_{\alpha \beta }\left( r,\varphi \right) =\frac{2k}{\pi r^{k}}\underset{ \alpha }{\overset{\beta }{\int }}\ln ^{+}\left| \varphi \left( re^{i\theta }\right) \right| \sin \left( k\left( \theta -\alpha \right) \right) d\theta \geq 0, \] \[ C_{\alpha \beta }\left( r,\varphi \right) =2k\underset{r_{0}}{\overset{r}{ \int }}c_{\alpha \beta }\left( t,\varphi \right) \left( \frac{1}{t^{k+1}}+ \frac{t^{k-1}}{r^{2k}}\right) dt\geq 0, \] where the function \(c_{\alpha \beta }\left( t,\varphi \right) \) is a counting function of poles of the branch \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) which is defined as \[ c_{\alpha \beta }\left( t,\varphi \right) =c_{\alpha \beta }\left( t,\infty ,\varphi \right) =\underset{\alpha \leq \psi _{n}\leq \beta }{\underset{ r_{0} <\left| \rho _{n}\right| \leq t}{\sum }} \sin \left( k\left( \psi _{n}-\alpha \right) \right) , \] where \(\rho _{n}e^{i\psi _{n}}\) are the poles of the function \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) counting with their multiplicities, and \[ S_{\alpha \beta }\left( r,\varphi \right) =A_{\alpha \beta }\left( r,\varphi \right) +B_{\alpha \beta }\left( r,\varphi \right) +C_{\alpha \beta }\left( r,\varphi \right) . \] For \(a\in \overline{\mathbb{C}}=\mathbb{C}\cup \left\{ \infty \right\} ,\) the defect \(\delta _{\alpha \beta }\left( a,\varphi \right) \) of a single-valued function \(\varphi \left( z\right) ,z\in g_{\alpha \beta }\) at the point \(a\) is defined as \[ \delta _{\alpha \beta }\left( a\right) =\delta _{\alpha \beta }\left( a,\varphi \right) =\underset{r\rightarrow +\infty }{\lim \inf }\frac{ A_{\alpha \beta }\left( r,\frac{1}{\varphi -a}\right) +B_{\alpha \beta }\left( r,\frac{1}{\varphi -a}\right) }{S_{\alpha \beta }\left( r,\varphi \right) }. \] If \(\delta _{\alpha \beta }\left( a\right) >0\), then \(a\) is called the deficiency value of the function \(\varphi \in M_{b}\). We say that a function \(\varphi \in M_{b}\) is of finite order of growth \(\rho ,\) if \[ \rho =\underset{\forall \alpha ,\beta }{\sup }\underset{r\rightarrow +\infty }{\lim \sup }\frac{\ln ^{+}S_{\alpha \beta }\left( r,\varphi \right) }{\ln r} <+\infty \text{ }\left( -\infty <\alpha <\beta <+\infty \right) . \] In this paper under review, the authors investigate the distribution of values of the solutions to the algebraic differential equation \[ P\left( z,\varphi ,\varphi ^{\prime },\cdots ,\varphi ^{\left( s\right) }\right) =\overset{n}{\underset{j=0}{\sum }}\underset{j=k_{0}+\cdots +k_{s}} { \sum }a_{k_{0}\cdots k_{s}}(z)\left( \varphi \right) ^{k_{0}}\left( \varphi ^{\prime }\right) ^{k_{1}}\cdot \cdot \cdot \left( \varphi ^{\left( s\right) }\right) ^{k_{s}}=0, \tag{1} \] where \(a_{k_{0}\cdots k_{s}}\in \) \(M_{b}\). The main result of the paper states as follows: Let \(\varphi \in M_{b}\) be a solution of \(\left( 1\right) \) with finite order such that \[ S_{\alpha \beta }\left( r,\varphi \right) \neq O\left( \overset{n}{\underset{ j=0}{\sum }}\underset{j=k_{0}+\cdots +k_{s}}{\sum }S_{\alpha \beta }\left( r,a_{k_{0}\cdots k_{s}}\right) \right) . \] If \(a\neq \infty \) and \(\delta _{\alpha \beta }\left( a\right) >0,\) then the following identity \[ P\left( z,a,0,\cdots ,0\right) \equiv 0,\text{ }z\in H \] holds. If \(P\left( z,a,0,\cdots ,0\right) \not\equiv 0\) in the collection of variables \(z\) and \(a\), then only finitely many values of \(a\) can be deficiency values for the solutions \(\varphi \in M_{b}\) of finite order.
    0 references
    analytic functions
    0 references
    order of growth, Nevanlinna characteristics, algebraic differential equation, deficiency value
    0 references

    Identifiers