Low Mach number asymptotics for reacting compressible fluid flows (Q2268679)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Low Mach number asymptotics for reacting compressible fluid flows
scientific article

    Statements

    Low Mach number asymptotics for reacting compressible fluid flows (English)
    0 references
    0 references
    0 references
    8 March 2010
    0 references
    For each \( \varepsilon>0\), it is assumed the existence of a solution \((\rho_\varepsilon,{\mathbf u}_\varepsilon)\) in the sense of renormalized solution, \(\vartheta_\varepsilon\) in the sense of very weak solution and \(Y_\varepsilon\) in the sense of entropy solution to the Navier-Stokes-Fourier system for classical perfect gases, under homogeneous boundary conditions, \[ \partial_t\rho_\varepsilon+\nabla\cdot(\rho_\varepsilon{\mathbf u}_\varepsilon)=0; \] \[ \begin{multlined}\partial_t(\rho_\varepsilon{\mathbf u}_\varepsilon)+\nabla\cdot(\rho_\varepsilon{\mathbf u}_\varepsilon \otimes {\mathbf u}_\varepsilon)- \nabla\cdot \left(2\mu(\vartheta_\varepsilon)D{\mathbf u}_\varepsilon -{2\over 3}\mu(\vartheta_\varepsilon) \nabla\cdot {\mathbf u}_\varepsilon I\right)\\ =-{1\over\varepsilon^2} \left(a\vartheta_\varepsilon^3\nabla \vartheta_\varepsilon +\nabla( {\vartheta_\varepsilon^{5/2}}P\left({\rho_\varepsilon\over\vartheta_\varepsilon ^{3/2}}\right))\right)- {1\over\varepsilon}\rho_\varepsilon{\mathbf j};\end{multlined} \] \[ \begin{multlined}\partial_t(\rho_\varepsilon s)+\nabla\cdot(\rho_\varepsilon s{\mathbf u}_\varepsilon) -\nabla\cdot\left({\kappa(\vartheta_\varepsilon)\over\vartheta_\varepsilon}\nabla\vartheta_\varepsilon \right)=\varepsilon^2 {2\mu(\vartheta_\varepsilon)\over\vartheta_\varepsilon} \left(|D{\mathbf u}_\varepsilon|^2 -{1\over 3}(\nabla\cdot {\mathbf u}_\varepsilon)^2\right)\\ +{\kappa(\vartheta_\varepsilon)\over\vartheta_\varepsilon^2}|\nabla\vartheta_\varepsilon|^2 +{h\over\varepsilon}\rho_\varepsilon Y_\varepsilon {(\vartheta_\varepsilon-\bar\vartheta)^+\over\vartheta_\varepsilon}\exp\left(-{k\over \vartheta_\varepsilon-\bar\vartheta}\right); \end{multlined} \] \[ \partial_t(\rho_\varepsilon Y_\varepsilon)+\nabla\cdot(\rho_\varepsilon Y_\varepsilon {\mathbf u}_\varepsilon)-\nabla\cdot(d(\vartheta_\varepsilon)\nabla Y_\varepsilon)= -{1\over\varepsilon}\rho_\varepsilon Y _\varepsilon (\vartheta_\varepsilon-\bar\vartheta)^+\exp\left(-{k\over \vartheta_\varepsilon-\bar\vartheta}\right); \] \[ {d\over dt}\int_\Omega \rho_\varepsilon\left( \varepsilon^2{|{\mathbf u}_\varepsilon |^2\over 2}+a{\vartheta_\varepsilon^4\over\rho_\varepsilon}+ {3\over 2} {\vartheta_\varepsilon^{5/2}\over\rho_\varepsilon}P\left({\rho_\varepsilon \over\vartheta_\varepsilon^{3/2}}\right)+ hY_\varepsilon+ \varepsilon x_3\right)dx=0. \] Here \(\rho_\varepsilon\), \({\mathbf u}_\varepsilon\), \(\vartheta_\varepsilon\) and \(Y_\varepsilon\) represent the density, the fluid velocity vector, the absolute temperature and the reactant mass fraction, respectively, \({\mathbf j}=(0,0,1)\), the specific entropy \(s=4a\vartheta^4/(3\rho)+S(\rho/\vartheta^{5/2})\), with \(S\) correlated to \(P\), and \(a\) and \(h\) denote some positive constants. If the transport coefficients \(\mu\), \(\kappa\) and \(d\) obey \( 0<c_1(1+\vartheta)\leq \mu(\vartheta),\) \(|\mu'(\vartheta)|\leq c_2;\) \(0<c_1(1+\vartheta^3)\leq \kappa(\vartheta)\leq c_2(1+\vartheta^3);\) \(0<c_1(1+\vartheta)\leq d(\vartheta),\) \( |d'(\vartheta)|\leq c_2,\) for all \(\vartheta>0, \) and the initial conditions are such that \(\rho_\varepsilon(0)=\bar\rho+\varepsilon \rho_{\varepsilon,0}^{(1)}\), \({\mathbf u}_\varepsilon(0)={\mathbf u}_{\varepsilon,0}\), \(\vartheta_\varepsilon(0)=\bar\vartheta+\varepsilon \vartheta_{\varepsilon,0}^{(1)}\), \(Y_\varepsilon(0)=\varepsilon Y_{\varepsilon,0}^{(1)}\) satisfy some additional convergences, the authors study how an asymptotic limit \(({\mathbf u},\Theta,Z)\) can represent a variational solution to a reduced reactive Boussinesq system \[ \bar\rho( \partial_t{\mathbf u}+{\mathbf u}\cdot\nabla{\mathbf u})- \mu(\bar\vartheta)\Delta{\mathbf u} =-\nabla p-\bar\rho\bar\alpha\Theta{\mathbf j};\qquad\nabla\cdot {\mathbf u}=0; \] \[ \bar\rho\bar c_p( \partial_t\Theta+{\mathbf u}\cdot\nabla\Theta) =\kappa({\bar\theta})\Delta\Theta; \qquad\bar\rho(\partial_t Z+{\mathbf u}\cdot\nabla Z)=d(\bar\vartheta)\Delta Z, \] in a bounded tube-like domain \(\Sigma \times]0,1[\subset\Omega\subset\Sigma\times\mathbb R\), of class \(C^3\), with \(\Sigma\) denoting a bounded domain of \(\mathbb R^2\), for \(p\in \mathcal{D}'((0,T)\times\Omega)\) and some constants \(\bar\alpha\) and \(\bar c_p\). The proof of convergence is based on the finding of adequate estimates.
    0 references
    Navier-Stokes-Fourier system
    0 references
    variational solution
    0 references
    reduced Boussinesq system
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references