On \(p\)-th order of a function analytic in the unit disc (Q2276624)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On \(p\)-th order of a function analytic in the unit disc
scientific article

    Statements

    On \(p\)-th order of a function analytic in the unit disc (English)
    0 references
    0 references
    11 April 2006
    0 references
    Let \(f(z)=\sum^\infty_{n=0}c_nz^n\) define a function in the unit disc. Let \(M(r)\) be the maximum of \(|f(z)|\) on \(|z|=r\). If for some \(p\leq 2\), \(\limsup_{r\to 1}((\log^{[p]}M(r))/(-\log(1-r)))=\rho\), where \(\log^{[m]} x= \log(\log^{[m-1]}z)\), then \(\frac{\rho}{1+\rho}= \limsup_{n\to\infty} ((\log^{+ [p]}|c_n|)/(\log n))\). A characterization for lower order is also shown.
    0 references
    0 references

    Identifiers