Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude. (Finite cyclicity of hyperbolic polycycles of plane vector fields. Finiteness algorithm) (Q2276826)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude. (Finite cyclicity of hyperbolic polycycles of plane vector fields. Finiteness algorithm) |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude. (Finite cyclicity of hyperbolic polycycles of plane vector fields. Finiteness algorithm) |
scientific article |
Statements
Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude. (Finite cyclicity of hyperbolic polycycles of plane vector fields. Finiteness algorithm) (English)
0 references
1991
0 references
We show that generic hyperbolic polycycles are of finite cyclicity in smooth families of vector fields on the plane. A consequence is that the Hilbert 16th problem is locally true in some open dense subset of the space of polynomial vector fields on the plane of degree less than or equal to n.
0 references
saddle point
0 references
generic unfolding
0 references
hyperbolicity ratio
0 references
displacement map
0 references
finite cyclicity
0 references
vector fields
0 references
0 references