Improved Bellman and Aczél inequalities for operators (Q2288237)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Improved Bellman and Aczél inequalities for operators |
scientific article |
Statements
Improved Bellman and Aczél inequalities for operators (English)
0 references
17 January 2020
0 references
If \(\Phi:\mathbb{B}(\mathcal{H})\rightarrow\mathbb{B}(\mathcal{K})\) is unital positive linear map, \(A, B\in\mathbb{B}(\mathcal{H})\) are contractions, \(p>1\) and \(0 \le \lambda \le 1\), then \[ \left(\Phi\left(I_\mathcal{H}-A\nabla_\lambda B\right)\right)^{1/p}\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\lambda\left(I_\mathcal{H}-B\right)^{1/p}\right)\!,\tag{1} \] which is an operator version of Bellman's inequality. Also, the operator version of the Aczél inequality is as follows: \[ f(A^p)\sharp_{1/q}f(B^q) \le f(A^p\sharp_{1/q}B^p),\tag{2} \] where \(f\) is non-negative operator decreasing and operator concave function and \(p, q>1\) with \(\frac{1}{p}+\frac{1}{q}=1\). In the paper under review, the authors present the following refinement of the operator Bellman inequality: \begin{align*} &\left(\Phi\left(I_\mathcal{H}-A\nabla_\lambda B\right)\right)^{1/p}\\ &\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\nu\left(I_\mathcal{H}-A\nabla_\lambda B\right)^{1/p}\right)\nabla_\lambda\Phi\left(\left(I_\mathcal{H}-B\right)^{1/p}\nabla_\nu\left(I_\mathcal{H}-A\nabla_\lambda B\right)^{1/p}\right)\\ &\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\lambda\left(I_\mathcal{H}-B\right)^{1/p}\right)\!, \end{align*} where \(\Phi, A, B, \lambda\) and \(p\) are as inequality (1) and \(0 \le \nu \le 1\). In continuation, the authors obtain the following refinement of inequality (2): \begin{align*} &f(A^p)\sharp_{1/q}f(B^q)\\ &\le \left(f(A^p)\sharp_\nu\left(f(A^p)\sharp_{1/q}f(B^q)\right)\right)\nabla_{1/q}\left(f(B^q)\sharp_\nu\left(f(A^p)\sharp_{1/q}f(B^q)\right)\right)\\ &\le f(A^p\sharp_{1/q}B^p). \end{align*}
0 references
operator inequality
0 references
Bellman inequality
0 references
Aczel inequality
0 references
positive linear map
0 references
operator mean
0 references