Improved Bellman and Aczél inequalities for operators (Q2288237)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Improved Bellman and Aczél inequalities for operators
scientific article

    Statements

    Improved Bellman and Aczél inequalities for operators (English)
    0 references
    0 references
    0 references
    17 January 2020
    0 references
    If \(\Phi:\mathbb{B}(\mathcal{H})\rightarrow\mathbb{B}(\mathcal{K})\) is unital positive linear map, \(A, B\in\mathbb{B}(\mathcal{H})\) are contractions, \(p>1\) and \(0 \le \lambda \le 1\), then \[ \left(\Phi\left(I_\mathcal{H}-A\nabla_\lambda B\right)\right)^{1/p}\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\lambda\left(I_\mathcal{H}-B\right)^{1/p}\right)\!,\tag{1} \] which is an operator version of Bellman's inequality. Also, the operator version of the Aczél inequality is as follows: \[ f(A^p)\sharp_{1/q}f(B^q) \le f(A^p\sharp_{1/q}B^p),\tag{2} \] where \(f\) is non-negative operator decreasing and operator concave function and \(p, q>1\) with \(\frac{1}{p}+\frac{1}{q}=1\). In the paper under review, the authors present the following refinement of the operator Bellman inequality: \begin{align*} &\left(\Phi\left(I_\mathcal{H}-A\nabla_\lambda B\right)\right)^{1/p}\\ &\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\nu\left(I_\mathcal{H}-A\nabla_\lambda B\right)^{1/p}\right)\nabla_\lambda\Phi\left(\left(I_\mathcal{H}-B\right)^{1/p}\nabla_\nu\left(I_\mathcal{H}-A\nabla_\lambda B\right)^{1/p}\right)\\ &\ge \Phi\left(\left(I_\mathcal{H}-A\right)^{1/p}\nabla_\lambda\left(I_\mathcal{H}-B\right)^{1/p}\right)\!, \end{align*} where \(\Phi, A, B, \lambda\) and \(p\) are as inequality (1) and \(0 \le \nu \le 1\). In continuation, the authors obtain the following refinement of inequality (2): \begin{align*} &f(A^p)\sharp_{1/q}f(B^q)\\ &\le \left(f(A^p)\sharp_\nu\left(f(A^p)\sharp_{1/q}f(B^q)\right)\right)\nabla_{1/q}\left(f(B^q)\sharp_\nu\left(f(A^p)\sharp_{1/q}f(B^q)\right)\right)\\ &\le f(A^p\sharp_{1/q}B^p). \end{align*}
    0 references
    0 references
    operator inequality
    0 references
    Bellman inequality
    0 references
    Aczel inequality
    0 references
    positive linear map
    0 references
    operator mean
    0 references

    Identifiers