Exponential improvements for superball packing upper bounds (Q2308311)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Exponential improvements for superball packing upper bounds
scientific article

    Statements

    Exponential improvements for superball packing upper bounds (English)
    0 references
    0 references
    0 references
    0 references
    0 references
    2 April 2020
    0 references
    The authors show for every \(p \ge 2\) that the density of any packing of translates of the \(l_p\)-ball \(\mathbf{B}_p^n=\{(x_1,\ldots,x_n): |x_1|^p+\dots+|x_n|^p \le 1\}\) in \(\mathbb{R}^n\) does not exceed \(2^{(\gamma_p+o(1))n}\) with some \(\gamma_p < -1/p\) where \(n \to \infty\), this way improving a bound by \textit{J. G. van der Corput} and \textit{G. Schaake} [Acta Arith. 2, 152--160 (1936; Zbl 0015.15401)]. They give also upper bounds for \(1 \le p < 2\).
    0 references
    translative sphere packing
    0 references
    \(l_p\)-ball
    0 references
    maximal density
    0 references

    Identifiers