Modeling the beta distribution in short intervals (Q2313192)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Modeling the beta distribution in short intervals
scientific article

    Statements

    Modeling the beta distribution in short intervals (English)
    0 references
    0 references
    0 references
    0 references
    18 July 2019
    0 references
    Let \(f,g:\mathbb{N}\rightarrow\mathbb{C}\) be two multiplicative functions. Denote: \[ T_f(m,v)=\sum_{d|m,d\leqslant v}f(d),\ m\in\mathbb{N}, v\in\mathbb{R},\ T_f(m)=T_f(m,m), \] \[G(x,y,g)=\sum_{x<n\leqslant x+y}g(n),\ x,y\geqslant 0, \] \[ F(x,y,u,g,f)=\frac{1}{G(x,y,g)}\sum_{x<m\leqslant x+y}\frac{T_f(m,m^u)}{T_f(m)}g(m). \] The authors of the paper obtain upper bound for distance between \(F(x,y,u,f,g)\) and a suitable \textit{Beta distribution} for a wide class of multiplicative functions \(f,g\). The derived upper bound is uniform in \(u\in[0,1]\). Parameters of the limiting \textit{Beta distribution} depend on the behavior of functions \(f,g\) on prime numbers.
    0 references
    natural divisor
    0 references
    multiplicative function
    0 references
    distribution function
    0 references

    Identifiers