Uniqueness of primary decompositions in Laskerian le-modules (Q2317446)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Uniqueness of primary decompositions in Laskerian le-modules |
scientific article |
Statements
Uniqueness of primary decompositions in Laskerian le-modules (English)
0 references
9 August 2019
0 references
An le-module $M$ over a commutative ring $R$ is a complete lattice ordered monoid $(M,+,\leqslant, e)$ with greatest element $e$ and module like action of $R$ on it. Such an $R$-module is called Laskerian if each submodule is a finite intersection of primary submodules. Theorems on primary decompositions of element of such modules are proved.
0 references
module
0 references
primary decomposition
0 references
Laskerian module
0 references
le-module
0 references
submodule element
0 references