Uniqueness of primary decompositions in Laskerian le-modules (Q2317446)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Uniqueness of primary decompositions in Laskerian le-modules
scientific article

    Statements

    Uniqueness of primary decompositions in Laskerian le-modules (English)
    0 references
    0 references
    0 references
    9 August 2019
    0 references
    An le-module $M$ over a commutative ring $R$ is a complete lattice ordered monoid $(M,+,\leqslant, e)$ with greatest element $e$ and module like action of $R$ on it. Such an $R$-module is called Laskerian if each submodule is a finite intersection of primary submodules. Theorems on primary decompositions of element of such modules are proved.
    0 references
    module
    0 references
    primary decomposition
    0 references
    Laskerian module
    0 references
    le-module
    0 references
    submodule element
    0 references

    Identifiers