Matrix transformations involving generalized almost convergent sequences (Q2330050)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Matrix transformations involving generalized almost convergent sequences
scientific article

    Statements

    Matrix transformations involving generalized almost convergent sequences (English)
    0 references
    0 references
    0 references
    18 October 2019
    0 references
    Let \(p=\left(p_{k}\right) \) be a positive real sequence. In addition to the usual Maddox sequence spaces \[\ell \left(p\right) =\left\{ \left(x_{k}\right) :\sum_{k}\left\vert x_{k}\right\vert ^{p_{k}}<\infty \right\} ,\] \[c_{0}\left(p\right) =\left\{\left(x_{k}\right) :\lim_{k}\left\vert x_{k}\right\vert ^{p_{k}}=0\right\},\;\; c\left(p\right) =c_{0}\left(p\right) \oplus \left\langle \left(1,1,\dots\right) \right\rangle \] and \[\ell_{\infty }\left(p\right) =\left\{\left(x_{k}\right) :\sup_{k}\left\vert x_{k}\right\vert ^{p_{k}}<\infty\right\} ,\] the authors consider the spaces \[M_{0}\left(p\right) =\bigcup\limits_{N\in \mathbb{N}}\left\{ \left(x_{k}\right) :\sum_{k}\left\vert x_{k}\right\vert N^{-1/p_{k}}<\infty \right\} ,\] \[f_{0}\left(p\right) =\left\{ \left(x_{k}\right) :\lim_{m\rightarrow \infty }\left\vert \frac{1}{m+1}\sum_{i=0}^{m}x_{n+i}\right\vert =0\; {\text{uniformly}}\; {\text{in}}\; n\right\} \] and \[f\left(p\right) =f_{0}\left(p\right) \oplus \left\langle \left(1,1,\dots \right) \right\rangle ,\] which are perhaps not so familiar. They characterize the matrix transformations \(A:E\rightarrow F\), where \(E\in \left\{ c_{0}\left(p\right) ,c\left(p\right) ,\ell ^{\infty }\left(p\right) ,M_{0}\left(p\right) ,\ell \left(p\right) ,bv\right\} \) and \(F\in \left\{ f_{0}\left(p\right) ,f\left(p\right) \right\}\). In so doing, they correct some errors in two papers of \textit{S. Nanda}, see [Mat. Vesn., N. Ser. 13(28), 305--312 (1976; Zbl 0358.46010)] and [J. Indian Math. Soc., New Ser. 40, 173--184 (1976; Zbl 0445.40003)].
    0 references
    matrix transformation
    0 references
    almost convergence
    0 references
    Maddox sequence space
    0 references
    0 references

    Identifiers