On the Diophantine equation \(L_n-L_m = 2\cdot 3^a\) (Q2338602)

From MaRDI portal





scientific article
Language Label Description Also known as
English
On the Diophantine equation \(L_n-L_m = 2\cdot 3^a\)
scientific article

    Statements

    On the Diophantine equation \(L_n-L_m = 2\cdot 3^a\) (English)
    0 references
    21 November 2019
    0 references
    Let \(L_{{\kern 1pt} k} \) be the Lucas numbers. The author solved the Diophantine equation \(L_{n} -L_{m} =2\cdot 3^{{\kern 1pt} a} \) for nonnegative integers \(n,m,a;\; \, n>m\). The solutions for \((n,m,a)\) are the triplets \((3,0,0),(2,1,0),(4,1,1),(7,5,2),(8,7,2)\).
    0 references
    Diophantine equation
    0 references
    lower bounds
    0 references
    logarithmic method
    0 references

    Identifiers