The Lefschetz coincidence class of \(p\) maps (Q2343366)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The Lefschetz coincidence class of \(p\) maps
scientific article

    Statements

    The Lefschetz coincidence class of \(p\) maps (English)
    0 references
    5 May 2015
    0 references
    Let \(X\) be a topological space and \(Y\) a closed, connected, \(n\)-dimensional manifold and \(f_1,\dotsc,f_p\) maps from \(X\) to \(Y\). Let \(\mu\in H^n(Y\times Y,Y\times Y\setminus\Delta)\) denote the Thom class. For \(i=1,\dotsc,p-1\) let \(h_i:=(f_i,f_{i+1}):X\to Y\times Y\). Denote by \(j:Y\times Y\to(Y\times Y,Y\times Y\setminus\Delta)\) the inclusion and define the Lefschetz class of \(f_1,\dotsc,f_p\) by \(L(f_,\dotsc,f_p):= [(\undersetbrace p-1\to{(j\times\dotsb\times j)}\circ(h_1,\dotsc,h_{p-1})]^*(\undersetbrace p-1\to{(\mu\times\dotsb,\mu)}\in H^{n(p-1)}X\). The authors prove that \(L(f_1,\dotsc,f_p)\not=0\) implies that the coincidence set of \(f_1,\dotsc,f_p\) is nonempty. If \(Y\) is a homology \(n\)-sphere they derive several formulae to calculate \(L(f_1,\dotsc,f_p)\).
    0 references
    Lefschetz coincidence class
    0 references
    Lefschetz coincidence number
    0 references
    homology sphere
    0 references

    Identifiers