Separable functors in group coring. (Q2348675)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Separable functors in group coring.
scientific article

    Statements

    Separable functors in group coring. (English)
    0 references
    0 references
    15 June 2015
    0 references
    Let \(k\) be a field, \(\pi\) a group with identity \(e\) and \(A\) a \(k\)-algebra. A \(\pi\)-\(A\)-coring \(\mathcal C\) is a family \(\{\mathcal C_\alpha\}_{\alpha\in\pi}\) of \(A\)-bimodules together with a family of \(A\)-bimodule maps \(\Delta_{\alpha,\beta}\colon\mathcal C_{\alpha\beta}\to\mathcal C_\alpha\otimes_A\mathcal C_\beta\), \(\varepsilon\colon\mathcal C_e\to A\) such that \((\Delta_{\alpha,\beta}\otimes_A\text{id}_{\mathcal C_\gamma})\circ\Delta_{\alpha\beta,\gamma}=(\text{id}_{\mathcal C_\alpha}\otimes\Delta_{\beta,\gamma})\circ\Delta_{\alpha,\beta\gamma}\), and \((\text{id}_{\mathcal C_\alpha}\otimes_A\varepsilon)\circ\Delta_{\alpha,e}=\text{id}_{\mathcal C_\alpha}=(\varepsilon\otimes_A\text{id}_{\mathcal C_\alpha})\circ\Delta_{e,\alpha}\), for all \(\alpha,\beta,\gamma\in\pi\), where \(\Delta_{\alpha,\beta}(c)=c_{(1,\alpha)}\otimes_Ac_{(2,\beta)}\). A right \((\pi\)-\(\mathcal C)\)-comodule \(M\) is a family of right \(A\)-modules \(\{M_\alpha\}_{\alpha\in\pi}\) together with a family of right \(A\)-linear maps \(\rho^M=\{\rho_{\alpha,\beta}^M\}_{\alpha,\beta\in\pi}\) where \(\rho_{\alpha,\beta}^M\colon M_{\alpha\beta}\to M_\alpha\otimes_A\mathcal C_\beta\) such that \((\text{id}_{M_\alpha}\otimes_A\Delta_{\beta,\gamma})\circ\rho_{\alpha,\beta\gamma}^M=(\rho_{\alpha,\beta}^M\otimes_A\text{id}_{\mathcal C_\gamma})\circ\rho_{\alpha\beta,\gamma}^M\) and \((\text{id}_{M_\alpha}\otimes_A\varepsilon)\circ\rho_{\alpha,e}^M=\text{id}_{M_\alpha}\) for all \(\alpha,\beta,\gamma\in\pi\). A morphism between right \((\pi\)-\(\mathcal C)\)-comodules \(\{M_\alpha\}\) and \(\{N_\alpha\}\) is a family of right \(A\)-linear maps \(f=\{f_\alpha\}_{\alpha\in\pi}\), \(f_\alpha\colon M_\alpha\to N_\alpha\) such that \((f_\alpha\otimes_A\text{id}_{\mathcal C_\beta})\circ\rho_{\alpha,\beta}^M=\rho_{\alpha,\beta}^N\circ f_{\alpha\beta}\). Denote the category of right \((\pi\)-\(\mathcal C)\)-comodules by \(\mathcal M^{\pi,\mathcal C}\). Let \(\mathcal C\) and \(\mathcal D\) be two categories, \(F\colon\mathcal C\to\mathcal D\) a covariant functor, and the natural transformation induced by \(F\), \(\mathcal F\colon\Hom_{\mathcal C}(\cdot,\cdot)\to\Hom_{\mathcal D}(F(\cdot),F(\cdot))\). Then \(F\) is called a separable functor if \(\mathcal F\) splits. Let \((F,G)\) be adjoint functors between \(\mathcal M^{\pi,\mathcal C}\) and \(\mathcal M_A\) where \(F\colon\mathcal M^{\pi,\mathcal C}\to\mathcal M_A\) by \(F(M)=M_e\), \(F(f)=f_e\) and \(G(N)=N\otimes_A\mathcal C_\alpha=\{N\otimes_A\mathcal C_\alpha\}_{\alpha\in\pi}\), for \(M\in\mathcal M^{\pi,\mathcal C}\), \(N\in\mathcal M_A\). It is shown that for a \(\pi\)-\(A\)-coring \(\mathcal C\), the forgetful functor \(F\colon\mathcal M^{\pi,\mathcal C}\to\mathcal M_A\) is separable if and only if there exists a family of \(A\)-bimodules \(\theta=\{\theta^{(\alpha)}\colon\mathcal C_{\alpha^{-1}}\otimes_A\mathcal C_\alpha\to A\}_{\alpha\in\pi}\) such that \(\theta^{(\alpha)}(c'_{(1,\alpha^{-1})}\otimes_Ac'_{(2,\alpha)})=\varepsilon (c')\), and \(c_{(1,\beta)}\theta^{(\alpha\beta)}(c_{(2,\beta^{-1}\alpha^{-1})}\otimes_Ad)=\theta^{(\alpha)}(c\otimes_Ad_{(1,\alpha)})d_{(2,\beta)}\) for all \(c'\in\mathcal C_e\), \(c\in\mathcal C_{\alpha^{-1}}\), \(d\in\mathcal C_{\alpha\beta}\). The result is applied to group entwined modules, Doi-Hopf group modules and relative Hopf modules.
    0 references
    0 references
    group corings
    0 references
    bimodules
    0 references
    comodules
    0 references
    separable functors
    0 references
    group entwined modules
    0 references
    Doi-Hopf group modules
    0 references
    relative Hopf group modules
    0 references

    Identifiers