Global gradient estimates for nonlinear elliptic equations with vanishing Neumann data in a convex domain (Q2364388)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global gradient estimates for nonlinear elliptic equations with vanishing Neumann data in a convex domain |
scientific article |
Statements
Global gradient estimates for nonlinear elliptic equations with vanishing Neumann data in a convex domain (English)
0 references
19 July 2017
0 references
The paper deals with weak solutions to the Neumann problem \[ \begin{cases} \text{div} \left((A(x)\nabla u\cdot\nabla u)^{(p-2)/2} A(x)\nabla u\right)=\text{div} \left(|\mathbf{f}|^{p-2} \mathbf{f}\right) & \text{in}\;\Omega,\\ (A(x)\nabla u\cdot\nabla u)^{(p-2)/2} A(x)\nabla u\cdot \nu= |\mathbf{f}|^{p-2} \mathbf{f}\cdot \nu & \text{on}\;\partial\Omega, \end{cases} \] in a bounded and convex domain \(\Omega\subset\mathbb{R}^n,\) where \(A(x)\) is a symmetric and uniformly elliptic matrix with small-BMO entries and \(\mathbf{f}=(f^1,\ldots,f^n)\in L^p(\Omega;\mathbb{R}^n)\) with \(p\in(1,\infty).\) Applying well known techniques, mainly due to [\textit{S.-S. Byun} and \textit{L. Wang}, Commun. Pure Appl. Math. 57, No. 10, 1283--1310 (2004; Zbl 1112.35053)] and [\textit{A. Banerjee} and \textit{J. L. Lewis}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 100, 78--85 (2014; Zbl 1288.35220)], the author proves that \[ |\mathbf{f}|^p\in L^q(\Omega) \Longrightarrow |Du|^p\in L^q(\Omega)\quad \forall q\geq 1. \]
0 references
\(p\)-Laplacian
0 references
bounded convex domains
0 references
Neumann problem
0 references
gradient estimates
0 references
0 references
0 references
0 references
0 references