On sharpness of inequalities for independent random variables in Lorentz spaces (Q2366411)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On sharpness of inequalities for independent random variables in Lorentz spaces
scientific article

    Statements

    On sharpness of inequalities for independent random variables in Lorentz spaces (English)
    0 references
    0 references
    29 June 1993
    0 references
    Let \(L_{p,q}(I)\) be a Lorentz functional space, i.e., the space of all measurable functions \(f\) on \(I\) such that \(\| f \|_{p,q}< \infty\), where \[ \| f \|_{p,q} \equiv \left(\int_ I \bigl(f^*(t)\bigr)^ qd(t^{q/p})\right)^{1/q} <\infty, \] where \(0<p < \infty\), \(0<q<\infty\) and \(I=[0,1]\) or \([0,\infty)\). Here \(f^*\) is a nondecreasing rearrangement of the function \(| f |\). Earlier \textit{N. L. Carothers} and \textit{S. J. Dilworth} [J. Funct. Anal. 84, No. 1, 146-159 (1989; Zbl 0691.46015)] have proved inequalities: For \(1<p<2\), \(1 \leq q< \infty\) there exists a constant \(C=C(p,q)>0\) such that \[ C^{- 1}K^{-1}\|(a_ i)\|_ 2 \leq \Bigl\| \sum a_ if_ i \Bigr\|_{p,q} \leq CK\| (a_ i) \|_{p,q} \qquad (p<q), \] \[ C^{-1}K^{-1} \|(a_ i) \|_ 2 \geq \Bigl\| \sum a_ if_ i \Bigl\|_{p,q} \geq CK \|(a_ i) \|_{p,q} \qquad (q \leq p). \] The author investigates the following question: whether the right estimates in this inequalities can be improved for i.i.d. centered random variables? The answer to this question is negative.
    0 references
    Lorentz functional space
    0 references
    inequalities
    0 references

    Identifiers