Blocks of orthogonal random variables and the strong law of large numbers (Q2367062)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Blocks of orthogonal random variables and the strong law of large numbers
scientific article

    Statements

    Blocks of orthogonal random variables and the strong law of large numbers (English)
    0 references
    11 November 1993
    0 references
    Let \(\{X_ k\}\) be a sequence of random variables such that \(E(X_ k^ 2)=\sigma_ k^ 2<\infty\) and \(E(X_ k)=0\) (\(k=1,2,\dots\)). It is well-known that if (1) \(E(X_ k X_ l)=0\) \((k\neq l\); \(k,l=1,2,\dots)\) and (2) \(\sum_{k=1}^ \infty {{\sigma_ k^ 2} \over {k^ 2}}(\log k)^ 2<\infty\), then (3) \({1\over n}(X_ 1+\dots+X_ n)\to 0\) a.s. \((n\to\infty)\) [see \textit{J. L. Doob}, Stochastic processes (1953; Zbl 0053.268), p. 158]. This result remains true if (1) is weakened as follows (4) \(E(X_ k X_ l)=0\) \((2^{p-1}<k<l\leq 2^ p\); \(p,k,l=1,2,\dots)\) [\textit{F. Móricz}, Proc. Am. Math. Soc. 101, 709-715 (1987; Zbl 0632.60025)]. If we substitute in (4) the block \(p^ \alpha<k\leq (p+1)^ \alpha\) for \(2^{p-1}<k\leq 2^ p\), where \(\alpha>1\) is fixed, then (3) is no longer true; it is nevertheless true if we refine (2) as follows: (5) \(\sum_{k=1}^ \infty {{\sigma_ k^ 2} \over {k^{2- 1/\alpha}}}(\log k)^ 2<\infty\). This is our main result.
    0 references
    orthogonal random variables
    0 references
    strong law of large numbers
    0 references
    0 references

    Identifiers