The maximal conjugate and Hilbert operators on real Hardy spaces (Q2368561)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The maximal conjugate and Hilbert operators on real Hardy spaces
scientific article

    Statements

    The maximal conjugate and Hilbert operators on real Hardy spaces (English)
    0 references
    0 references
    0 references
    0 references
    5 October 2006
    0 references
    The authors prove that the maximal conjugate operator defined by \(\tilde f_*(x)=\sup\{|\tilde f(x,h)|:0<h<\pi(\infty)\}\) where \(\tilde f(x,h)=\frac 1\pi \int_{h<|t|<\pi}f(x-t)\frac 12 \cot \frac t2 \,dt\) \(\big(=\frac 1\pi \int_{h<|t|} \frac{f(x-t)}{t}\,dt\big)\) is not bounded from the real Hardy space \(H^1(\mathbb T)\) to \(L^1(\mathbb T)\) (\(H^1(\mathbb R)\) to \(L^1(\mathbb R)\)) and they also show that there exists \(f\in H^1(\mathbb T)\) such that \(\tilde f_*\notin L^1(\mathbb T)\) (\(f\in H^1(\mathbb R)\) such that \(\tilde f_*\notin L^1(\mathbb R)\)).
    0 references
    conjugate function
    0 references
    Hilbert transform
    0 references
    real Hardy space
    0 references
    atomic Hardy space
    0 references
    weak-\(L^1\)
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references