Automatic Rees matrix semigroups over categories. (Q2373412)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Automatic Rees matrix semigroups over categories.
scientific article

    Statements

    Automatic Rees matrix semigroups over categories. (English)
    0 references
    0 references
    19 July 2007
    0 references
    Automatic structures allow efficiently to perform computations in finitely generated groups and semigroups, e.g., to solve the word problem using a finite automaton. Let \(A\) be a finite set of generators of a semigroup \(S\), \(\$\notin A\), \(A(2,\$)=\{(A\cup\$)\times(A\cup\$)\}\setminus\{\$\times\$\}\). Define the mapping \(\delta_A\colon A^+\times A^+\to A(2,\$)\) by \[ (a_1\dots a_n,b_1\dots b_m)\delta_A=\begin{cases} (a_1,b_1)\dots(a_n,b_n), &\text{if \(n=m\)}\\ (a_1,b_1)\dots(a_n,b_n)(\$,b_{n+1})\dots(\$,b_m), &\text{if \(n<m\)}\\ (a_1,b_1)\dots(a_m,b_m)(a_{m+1},\$)\dots(a_n,\$), &\text{if \(n>m\).}\end{cases} \] If \(L\subseteq A^+\) is a regular language such that \(\overline L=S\) and for each \(a\in A\cup\{\varepsilon\}\) the set \(L_a=\{(u,v):u,v\in L,\;\overline{ua}=\overline v\}\delta_A\) is a regular language, then the semigroup \(S\) is called automatic and the pair \((A,L)\) an automatic structure for \(S\) (for more details see, e.g., \textit{C. M. Campbell, E. F. Robertson, N. Ruškuc} and \textit{R. M. Thomas} [Theor. Comput. Sci. 250, No. 1-2, 365-391 (2001; Zbl 0987.20033)]). The author has earlier generalized this notion for small categories and semigroupoids [\textit{M. Kambites}, Theor. Comput. Sci. 353, No. 1-3, 272-290 (2006; Zbl 1095.20032)]. Here is considered automaticity and prefix-automaticity in Rees matrix semigroups over semigroupoids and small categories. It is proved, e.g., that a finitely generated Rees matrix semigroup over an automatic semigroupoid is always automatic and provided some sufficient conditions for the underlying semigroupoid of an automatic Rees matrix semigroup to be automatic; these results are generalizations of corresponding results for Rees matrix semigroups over semigroups proved by \textit{L. Descalço} and \textit{N. Ruškuc} [Commun. Algebra 30, No. 3, 1207-1226 (2002; Zbl 1012.20052)].
    0 references
    Rees matrix semigroups
    0 references
    categories
    0 references
    automatic structures
    0 references
    finitely generated semigroups
    0 references
    word problem
    0 references
    finite automata
    0 references
    regular languages
    0 references
    semigroupoids
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references