Global existence and uniqueness of Schrödinger maps in dimensions \(d\geq 4\) (Q2381963)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Global existence and uniqueness of Schrödinger maps in dimensions \(d\geq 4\)
scientific article

    Statements

    Global existence and uniqueness of Schrödinger maps in dimensions \(d\geq 4\) (English)
    0 references
    0 references
    0 references
    0 references
    26 September 2007
    0 references
    For \(\sigma\geq 0\) and \(n\in \{1,2,\dots \}\) let \(H^\sigma=H^\sigma({\mathbb R}^d, {\mathbb C}^n)\) denote the Banach space of \({\mathbb C}^n\)-valued Sobolev functions on \({\mathbb R}^d\). For \(\sigma\geq 0\) and \(Q=(Q_1,Q_2,Q_3)\in {\mathbb S}^2\) define complete metric space \(H_Q^\sigma = H_Q^\sigma({\mathbb R}^d;{\mathbb S}^2\hookrightarrow {\mathbb R}^3) = \{f:{\mathbb R}^d\to{\mathbb R}^3; | f(x)| \equiv 1, f-Q\in H^\sigma \}\) with induced distance \(d_Q^\sigma(f,g) =\| f-g\| _{H^\sigma}\), and \(H^\infty_Q=\bigcap_{\sigma\in{\mathbb Z}_+} H_Q^\sigma\). Let \(s:{\mathbb R}^d\times{\mathbb R}\to {\mathbb S}^2\hookrightarrow {\mathbb R}^3\) is a continuous function. The authors consider the Schrödinger map initial-value problem \[ \begin{cases} \partial s = s\times \Delta_x s,\quad \text{ on}\quad {\mathbb R}^d \times {\mathbb R} \cr s(0)=s_0.\end{cases} \] It is proved that in dimensions \(d\geq 4\) this problem admits a unique global (in time) solution \(s\in C({\mathbb R}:H_Q^\infty)\), provided that \(s_0\in H_Q^\infty\) and \(\| s_0-Q\| _{H^{d/2}}\ll 1\), where \(Q\in {\mathbb S}^2\).
    0 references
    Schrödinger maps
    0 references
    modified Schrödinger maps
    0 references
    orthonormal frames
    0 references
    a priori estimates
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references