Spectral properties of the simple layer potential type operators (Q2393431)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spectral properties of the simple layer potential type operators |
scientific article |
Statements
Spectral properties of the simple layer potential type operators (English)
0 references
8 August 2013
0 references
The exact asymptotical behavior of singular values of the simple layer potential type operators obtained. The main result is as follows. Let \(\Omega \) be a bounded, simply connected domain in \(\mathbb C\) with analytic boundary, and let \(T: L^2 (\partial \Omega )\to L^2 (\Omega )\) be the operator defined by \[ Tf(z)=(2\pi)^{-1} \int _{\partial \Omega }\ln \left|z-\xi \right|f(\xi )\left|d\xi \right| . \] Then \(s_{n} (T)\approx \left(\frac{\left|\partial \Omega \right|}{2\pi n} \right)^{3/2}\), where \(s_n (T)\) denotes singular values of operator \(T\). (Here, \(a_n\approx b_n\) denotes the fact that \(\lim _{n\to \infty} (a_n/b_n)=1\)).
0 references
simple layer potential
0 references
asymptotics of singular values
0 references
0 references