Spectral properties of the simple layer potential type operators (Q2393431)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Spectral properties of the simple layer potential type operators
scientific article

    Statements

    Spectral properties of the simple layer potential type operators (English)
    0 references
    8 August 2013
    0 references
    The exact asymptotical behavior of singular values of the simple layer potential type operators obtained. The main result is as follows. Let \(\Omega \) be a bounded, simply connected domain in \(\mathbb C\) with analytic boundary, and let \(T: L^2 (\partial \Omega )\to L^2 (\Omega )\) be the operator defined by \[ Tf(z)=(2\pi)^{-1} \int _{\partial \Omega }\ln \left|z-\xi \right|f(\xi )\left|d\xi \right| . \] Then \(s_{n} (T)\approx \left(\frac{\left|\partial \Omega \right|}{2\pi n} \right)^{3/2}\), where \(s_n (T)\) denotes singular values of operator \(T\). (Here, \(a_n\approx b_n\) denotes the fact that \(\lim _{n\to \infty} (a_n/b_n)=1\)).
    0 references
    simple layer potential
    0 references
    asymptotics of singular values
    0 references

    Identifiers