The moment map on symplectic vector space and oscillator representation (Q2403965)

From MaRDI portal
scientific article
Language Label Description Also known as
English
The moment map on symplectic vector space and oscillator representation
scientific article

    Statements

    The moment map on symplectic vector space and oscillator representation (English)
    0 references
    0 references
    12 September 2017
    0 references
    The main result of the paper is the following theorem. Let \(G=\mathrm{Sp}(n,\mathbb{R})\) or \(U(p,q)\) or \(O^*(2n)\). Let \((W,\omega)\) be the real symplectic \(G\)-vector space \(W=\mathbb{R}^{2n}\) or \((\mathbb{C}^{p+q})_{\mathbb{R}}\) or \((\mathbb{C}^{2n})_{\mathbb{R}}\) equipped with \(\omega(u,v)= ^t\nu)J_nw\) for \(W=\mathbb{R}^{2n}\) or \(\mathrm{Im}(v^*I_{p,q} w)\) for \(W=(\mathbb{C}^{p+q})_{\mathbb{R}}\) or \(\mathrm{Im}(v^*I_{n,n} w)\) for \(W=\mathbb{C}^{2n})_{\mathbb{R}}\) where \(J_n\) is the standard symplectic form on \(\mathbb{R}^{2n}\) and \(I_{p,q}\) is the standard quadratic form on \((\mathbb{C}^{p+q})\). Then with a certain choice of the complex Lagrangian subspace of the complexification \(W_{\mathbb{C}}\) of \(W\) the canonical quantization of the moment map \(\mu: W\rightarrow g_0^*\) yields the oscillator representations of \(g=sp_n, gl_{p+q},o_{2n}\), respectively.
    0 references
    symplectic vector space
    0 references
    moment map
    0 references
    canonical quantization
    0 references
    oscillator representation
    0 references
    Howe duality
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references