Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent (Q2414841)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent |
scientific article |
Statements
Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent (English)
0 references
17 May 2019
0 references
In this paper, the authors study the double scaling limit of the kernel related to the singular perturbed Laguerre unitary ensemble, defined by the weight function \[ w(x, t)=(x+t)^\lambda\,x^\alpha\,e^{-x},\qquad x \geq 0,\quad t > 0,\quad \alpha > 0,\quad \alpha+\lambda+1 > 0. \] In particular, utilizing Deift-Zhou nonlinear steepest descent method, they investigate the double scaling limit \(s=4\,n\,t, n\rightarrow \infty,\, t \rightarrow 0\) such that \(s\) is a positive and finite. The authors prove that under this limit the kernel is expressed in terms of the \(\varphi\)-function, which involves a particular Painlevé V equation. They also show that for \(s \rightarrow 0^+\) (resp. \(s\rightarrow \infty\)) the pointed kernel degenerates to the Bessel kernel \(J_{\alpha+\lambda}\) (resp. to \(J_\alpha\)). It turns out that at the soft edge ''the limiting kernel reads as the Airy kernel''.
0 references
perturbed Laguerre weight
0 references
Hankel determinants
0 references
Painlevé V equation
0 references
Riemann-Hilbert problem
0 references
Deift-Zhou nonlinear steepest descent method
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9395611
0 references
0.92855924
0 references
0.9194913
0 references
0.9179335
0 references
0.9164001
0 references
0.8828968
0 references
0.8666132
0 references
0.8650255
0 references
0.86340046
0 references