Norm convergence of double Fejér means on unbounded Vilenkin groups (Q2416486)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Norm convergence of double Fejér means on unbounded Vilenkin groups
scientific article

    Statements

    Norm convergence of double Fejér means on unbounded Vilenkin groups (English)
    0 references
    23 May 2019
    0 references
    Given a sequence $\{m_j\}\subset\mathbb{Z}$, let $M_0=1$ and $M_{k+1}=m_kM_k$. Each $n\in\mathbb{N}$ can be written as a finite sum $n=\sum_{j=0}^\infty n_jM_j$, $n_j\in\mathbb{Z}_{m_j}$. One defines a Vilenkin system $\psi=\{\psi_n\}$ where $\psi_n(x)=\prod_{k=0}^\infty \rho_k^{n_k}(x)$ with $\rho_k(x)=\exp(2\pi i x_k/m_k)$ and $x=(x_0,x_1,\dots)$, $x_j\in \mathbb{Z}_{m_j}$. The Dirichlet kernel is $D_n=\sum_{k=0}^{n-1}\psi_k$ with $D_{M_n}(x)=M_n$ if $x\in I_n$ and $D_{M_n}(x)=0$ if $x\in G\setminus I_n$, where $G=\prod_j \mathbb{Z}_{m_j}$ and $I_n(x)=\{y\in G: y_i=x_i, i=0,1,\dots, n-1\}$. Let $\hat{f}(i,j)=\langle f, \psi_i\psi_j\rangle$ with respect to Haar measure on $G\times G$ and define rectangular partial sums of the Vilenkin-Fourier series $S_{n,m}f(x)=\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} \hat{f}(i,j)\,\psi_i(x)\psi_j(y)$. Corresponding Fejér means are defined by $\sigma_{n,m}(f)=\frac{1}{nm}\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} S_{ij}(x,y;f)$ which can also be expressed by convolution against corresponding Fejér kernels.\par Let $X(G\times G)=C(G\times G)$ or $L^1(G\times G)$. Define moduli of continuity $\omega_1(1/M_n;f)_X=\sup\{\Vert f(\cdot-u,\cdot)-f(\cdot,\cdot)\Vert_X: u\in I_n\}$ and similarly $\omega_2$ by shifting in the second coordinate, and $\omega_{12}(1/M_n,1/M_\ell;f)=\sup\{\Vert f(\cdot-u,\cdot-v)-f(\cdot-u,\cdot)-f(\cdot,\cdot-v)-f(\cdot,\cdot)\Vert_X: u\in I_n, c\in I_\ell\}$. \par The first main result states that if $\omega_1(1/M_k;f)_X=o(1/\log^2(m_k))$ and $\omega_2(1/M_\ell;f)_X=o(1/\log^2(m_\ell))$ then $\Vert \sigma_{n,m}f-f\Vert_X\to 0$ as $n,m\to\infty$. The second main theorem states that if $f\in C(G\times G)$, if $\omega_1(1/M_k;f)_C=O(1/\log^2(m_k))$ and $\omega_2(1/M_\ell;f)_C=O(1/\log^2(m_\ell))$ then $\overline{\lim}_{n\to\infty}\Vert \sigma_{n,m}f-f\Vert_C\to 0$ as $n,m\to\infty$. The third main theorem draws the same conclusion with $C$ replaced by $L^1$. Several lemmas provide suitable bounds on norms of the Fejér kernel $K_n$, for example, $\Vert K_n\Vert_1\leq C\sum_{i=0}^A \frac{\log m_i}{2^{A-i}}(A-i+1)$ with some absolute constant $C$ when $M_A\leq n<M_{A+1}$. The techniques of proof involve estimates over lacunary annular type regions and mixed moduli of continuity bounds allow in turn bounds for double convolutions.
    0 references
    unbounded Vilenkin group
    0 references
    modulus of continuity
    0 references
    Fejér mean
    0 references
    convergence in norm
    0 references
    0 references
    0 references
    0 references

    Identifiers