Some identities of Cauchy numbers associated with continued fractions (Q2422203)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Some identities of Cauchy numbers associated with continued fractions
scientific article

    Statements

    Some identities of Cauchy numbers associated with continued fractions (English)
    0 references
    0 references
    0 references
    18 June 2019
    0 references
    The authors study the Cauchy numbers \(\{c_n\}_0^{\infty}\), defined by their generating function \[\frac{x}{\log{(1+x)}}=\sum_{n=0}^{\infty}\,c_n\frac{x^n}{n!}.\] Using the following continued fraction expansion of the generating function (mark that is not the regular C-fraction expansion) \[\frac{x}{\log{(1+x)}}=\frac{x|}{|1}+\frac{1^2x|}{|\ 2\ }+\frac{1^2x|}{|\ 3\ } +\frac{2^2x|}{|\ 4\ }+\frac{2^2x|}{|\ 5\ }+\frac{3^2x|}{|\ 6\ }+\] and explicit expressions for the numerators and denominators of the \(n\)th approximants, they prove the following result. Theorem 1. Let \(H_n=1+\frac{1}{2}+\cdot +\frac{1}{n}\) be the harmonic numbers, then we have \[ \sum_{\ell =0}^{\min{(k,n-1)}}\, \binom{2n-\ell}{2n-2\ell -1} \binom{2n-\ell -1}{n-\ell} \times \left((n+1)(H_n-H_{n-\ell})+\dfrac{2n-\ell -1}{2(n-\ell )}\right) \dfrac{c_{k-\ell}}{(k-\ell )!} = \] \[ \begin{cases} \dfrac{n+1}{2}\binom{2n-k+1}{n}\binom{n}{k}, & \quad 0\leq k\leq n-1 \\ \dfrac{n+1}{2}\binom{2n-k+1}{n}\binom{n}{k}- \dfrac{1}{2}\dfrac{c_{k-n}}{(k-n)!}, & \quad k=n \\ -\dfrac{1}{2}\dfrac{c_{k-n}}{(k-n)!}, & \quad n+1\leq k\leq 2n \end{cases}\] and \[ \sum_{\ell =0}^{\min{(k,n-2)}} \binom{2n-\ell -1}{2n-2\ell -2} \binom{2n-2\ell -3}{n-\ell -1} \left((H_n-H_{n-\ell -1}\right) \frac{c_{k-\ell}}{(k-\ell )!} = \] \[\begin{cases} \frac14 \binom{2n-k}{n} & \quad 0\leq k\leq n-2 \\ \frac14 \binom{2n-k}{n} \binom{n}{k} - \frac{H_n}{2} \frac{c_{k-n+1}}{(k-n+1)!} & \quad k=n-1,n \\ -\frac{H_n}{2}\frac{c_{k-n+1}}{(k-n+1)!} & \quad n+1\leq k\leq 2n. \end{cases} \] The layout of the paper is as follows: \S1. Introduction. \S2. Preliminaries. \S3. Main result: Contains the main result and its proof. \S4. Other continued fractions related to Cauchy numbers: Two other continued fractions for the generating function are mentioned. References (contains 13 items).
    0 references
    Cauchy numbers
    0 references
    harmonic numbers
    0 references
    generating function
    0 references
    continued fractions
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references