On irregular sampling and interpolation in Bernstein spaces (Q2423220)

From MaRDI portal
scientific article
Language Label Description Also known as
English
On irregular sampling and interpolation in Bernstein spaces
scientific article

    Statements

    On irregular sampling and interpolation in Bernstein spaces (English)
    0 references
    21 June 2019
    0 references
    The main results in this paper deal with the sharpness of interpolation- and sampling-constants and are given in the Theorems 1 and 2. The first one was partly announced by the authors in [C. R., Math., Acad. Sci. Paris 353, No. 1, 47--50 (2015; Zbl 1309.42030)]: Theorem 1. Let \(\Lambda\subset\mathbb{R}\) be a u.d. set. (i) If \(D{-}(\lambda)=1\), then \[ K_s(\Lambda, B_{\sigma})\geq C\log{\frac{\pi}{\pi-\sigma}},\ 0<\sigma <\pi. \] (ii) If \(D{+}(\lambda)=1\), then \[ K_i(\Lambda, B_{\sigma})\geq C\log{\frac{\sigma}{\sigma-\pi}},\ \pi<\sigma <2\pi. \] In the second result, \(\Lambda\subset\mathbb{T}\) is a finite set. Theorem 2. Assume \(\Lambda\subset\mathbb{T}\). (i) If \(\#\Lambda\geq n+1\), then \[ K_s(\Lambda, P_n)\geq C\log{\frac{n}{\#\Lambda-n}}. \] (ii) If \(\#\Lambda\leq n+1\), then \[ K_i(\Lambda, P_n)\geq C\log{\frac{n}{n+2-\#\Lambda}}. \] The concepts used are: -- the \textit{Bernstein space} \(B_{\sigma}\): the space of entire functions of exponential type \(\sigma>0\), bounded on \(\mathbb{R}\), equipped with the uniform norm, -- \(\Lambda\subset\mathbb{R}\) is a \textit{sampling set\/} for \(B_{\sigma}\) if there is a constant \(K\) with \[ \|f\|\leq K\|f|_{\Lambda}\|\hbox{ for every }f\in B_{\sigma}. \] -- the \textit{sampling norm} is \(\|f|_{\Lambda}\|=\sup_{\lambda\in\Lambda}\,|f(\lambda)|\). -- the \textit{sampling constant} is \[ K_s(\Lambda,B_{\sigma})=\sup_{f\in B_{\sigma},f\not= 0}\,\frac{\|f\|}{\|f|_{\Lambda}\|}. \] -- a discrete set is an \textit{interpolation set} for \(B_{\sigma}\) if for every sequence \(\{c(\lambda)\}\in \ell^{\infty}(\Lambda)\) there exists an \(f\in B_{\sigma}\) with \(f(\lambda)=c(\lambda),\ \lambda\in\Lambda\). -- the set \(\Lambda\) is said to be \textit{uniformly discrete} (u.d.) if \[ \inf_{\lambda,\lambda'\in\Lambda,\lambda\not=\lambda'}\,|\lambda-\lambda'|>0. \] -- the \textit{interpolation constant} \(K_i(\Lambda,B_{\sigma})\) is the minimal constant \(K\), such that \(\|f\| \leq K\|f|_{B_{\sigma}}\|\) for all \(f\in B_{\sigma}\) that interpolate in a bounded sequence. -- for Theorem 2 more definitions are in order. After this, the proofs take 10 pages of the paper. The list of references contains 8 items.
    0 references
    sampling
    0 references
    interpolation
    0 references
    Bernstein spaces
    0 references

    Identifiers