Plurisubharmonic geodesics and interpolating sets (Q2424598)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Plurisubharmonic geodesics and interpolating sets
scientific article

    Statements

    Plurisubharmonic geodesics and interpolating sets (English)
    0 references
    25 June 2019
    0 references
    The authors apply the notion of geodesics of plurisubharmonic functions to the interpolation of compact subsets of \(\mathbb C^n\). Let \(K_0, K_1\subset \mathbb C^n\) be non-pluripolar compact sets which are polynomially convex, and let \(u_j\) be the relative extremal function of \(K_j\), for \(j=0,1\), with respect to some bounded hyperconvex domain \(\Omega\supset K_0\cup K_1\). Then for \(0<t<1\) the functions \(u_t\) define a geodesic between \(u_0\) and \(u_1\), where \[\begin{split} u_t(z)=\sup\Big\{\varphi(z,e^t)&:\, u\in \mathrm{PSH}\big(\Omega\times \{\zeta\in \mathbb C: 0<\log |\zeta|<1\}\big), \\&\limsup u(z,\zeta)\leq u_j, \forall \, z\in \Omega, \log|\zeta|\to j, j=0,1\Big\}. \end{split}\] The sets \[ L_t=\big\{z\in \Omega: u_t(z)=-1\big\}, \quad\ 0<t<1, \] converge in Hausdorff metric to \(K_j\), where \(t\to j\in \{0,1\}\). The authors prove that the interpolating sets \(L_t\) can be represented as sections \(K_t=\{Z: (z,e^t)\in \hat K\}\) of the holomorphic hull \(\hat K\) of the set \[ (K_0\times\{\zeta: \log |\zeta|=0\})\cup (K_1\times\{\zeta: \log |\zeta|=1\})\subset \mathbb C^{n+1} \] with respect to holomorphic functions in \(\mathbb C^n\times(\mathbb C\setminus \{0\})\). If in addition \(K_0,K_1\Subset\mathbb D^n\) are Reinhardt sets then the function \(t\mapsto \operatorname{cap}(K_t,\mathbb D^n)\) is logarithmically convex, where the Monge-Ampère capacity is defined by \[ \operatorname{cap}(K,\Omega)=\sup\big\{(dd^cu)^n(K): u\in \operatorname{PSH}^-(\Omega), \ u|_K\leq -1 \big\}. \] In particular the following Brunn-Minkowski inequality holds: \[ \operatorname{cap}(K_0^{1-t}K_1^t,\mathbb D^n)\leq \operatorname{cap}(K_0,\mathbb D^n)^{1-t}\operatorname{cap}(K_1,\mathbb D^n)^t, \quad 0<t<1. \] Equality occurs in the above inequalities for some \(t\in (0,1)\) if and only if \(K_0=K_1\).
    0 references
    complex interpolation
    0 references
    plurisubharmonic geodesic
    0 references
    relative extremal function
    0 references
    Monge-Ampère capacity
    0 references
    Brunn-Minkowski inequality
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references