Growth envelopes of anisotropic function spaces (Q2427613)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Growth envelopes of anisotropic function spaces
scientific article

    Statements

    Growth envelopes of anisotropic function spaces (English)
    0 references
    0 references
    0 references
    0 references
    13 May 2008
    0 references
    Let \(\alpha = (\alpha_1, \dots, \alpha_n)\), \(0<\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n\), \(\sum^n_{j=1} \alpha_j =n\) be an anisotropy in \(\mathbb R^n\) and let \[ B^{s,\alpha}_{pq} (\mathbb R^n), \quad F^{s, \alpha}_{pq} (\mathbb R^n), \quad s \in\mathbb R, \quad 0<p,q\leq \infty, \quad(p<\infty\text{ for the \(F\)-spaces}) \] be the related anisotropic spaces. With \(A\in\{B,F\}\), the authors prove in the sub-critical case \[ n\left(\frac{1}{p}-1\right)_+<s<\frac{n}{p},\quad s - \frac{n}{p}=-\frac{n}{r},\quad 1<r<\infty, \] sharp embeddings of the type \[ \left(\int^{\varepsilon}_0(t^{1/r}f^*(t))^v\,\frac{dt}{t}\right)^{1/v}\leq c\,\| f|A^{s,\alpha}_{pq}(\mathbb R^n)\|\qquad\text{(Theorem 4.3)}. \] They are independent of the anisotropy \(\alpha\). In the critical case \(s = n/p\), one has corresponding results with \((\log t)^\lambda\) in place of \(t^{1/r}\) (Theorem 5.1). All this is formulated in terms of growth envelopes. It extends well-known corresponding assertions from the isotropic case \(\alpha_1 = \dots = \alpha_n =1\) to the anisotropic case. As a consequence, one gets sharp Hardy inequalities.
    0 references
    0 references
    anisotropic function spaces
    0 references
    growth envelopes
    0 references
    Hardy inequalities
    0 references

    Identifiers