Weak laws of large numbers for double arrays of random elements in Banach spaces (Q2431301)

From MaRDI portal





scientific article
Language Label Description Also known as
English
Weak laws of large numbers for double arrays of random elements in Banach spaces
scientific article

    Statements

    Weak laws of large numbers for double arrays of random elements in Banach spaces (English)
    0 references
    0 references
    12 April 2011
    0 references
    Let \((V_{mn})\) be random elements in a martingale type \(p\) Banach space. The author provides conditions for \[ \max_{1\leq k\leq u_m,\,1\leq l\leq v_n}\frac{1}{a_{mn}} \left\|\sum_{i=1}^{k}\sum_{j=1}^{l}(V_{ij}- c_{mnij})\right\| \to 0 \] and \[ a_{mn}^{-1}\sum_{i=1}^{T_m} \sum_{j=1}^{\tau_n}(V_{ij}-c_{mnij})\to 0 \] in probability as \(m,n\to\infty\) where: \((u_m)\), \((v_n)\), \((a_{mn})\) and \((b_{mn})\) are positive integers; \((T_m)\) and \((\tau_n)\) are positive integer valued random variables; \(\mathcal{F}_{ij}=\sigma(V_{kl})_{k<i}^{l<j}\); and \(c_{mnij}=E(V_{ij}I(\|V_{ij}\|\leq b_{mn}|\mathcal{F}_{ij}))\).
    0 references
    martingale type \(p\) Banach spaces
    0 references
    double arrays of random elements
    0 references
    double arrays
    0 references
    random indices
    0 references
    weak law of large numbers
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references