A Poincaré lemma in geometric quantisation (Q2438159)

From MaRDI portal
scientific article
Language Label Description Also known as
English
A Poincaré lemma in geometric quantisation
scientific article

    Statements

    A Poincaré lemma in geometric quantisation (English)
    0 references
    0 references
    0 references
    10 March 2014
    0 references
    The aim of this paper is to prove that, notwithstanding the fact that local closed forms are not necessarily locally exact for foliated cohomology of singular foliations, one can still prove a Poincaré lemma for the twisted (or Kostant) complex when the foliation is given by an integrable system with nondegenerate singularities. In particular, this allow to compute the geometric quantisation by calculating the cohomology of the Kostant complex from the geometrical properties of this type of singularities.
    0 references
    geometric quantisation
    0 references
    integrable system
    0 references
    singularities
    0 references
    moment maps
    0 references
    foliated cohomology
    0 references

    Identifiers