Homogeneous spaces and isoparametric hypersurfaces (Q2473595)
From MaRDI portal
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Homogeneous spaces and isoparametric hypersurfaces |
scientific article |
Statements
Homogeneous spaces and isoparametric hypersurfaces (English)
0 references
28 February 2008
0 references
An isoparametric hypersurface in a round sphere is a hypersurface with constant principal curvatures. If an isoparametric hypersurface in a sphere has four distinct principal curvatures, then these can arise with at most two different multiplicities \(m_1,m_2\), see [\textit{H. F. Münzner}, ``Isoparametrische Hyperflächen I,'' Math. Ann. 251, 57--71 (1980; Zbl 0417.53030)]. For such \(m_1, m_2\) let \(H(m_1,m_2)\) be the set of real symmetric \((2m_1+m_2)\times(2m_1+m_2)\) matrices endowed with the scalar product given by the trace. The author considers the homogeneous space \(N(m_1,m_2)=\{A\in H(m_1,m_2)\mid \text{ trace}\,A=0, \text{ rank}\,A = 2m_1, A^3=A\}\approx O(2m_1+m_2)/O(m_1)\times O(m_1)\times O(m_2)\) and proves that \(N(m_1,m_2)\) contains a totally geodesic round sphere of dimension \(m_2\).
0 references
constant principal curvatures
0 references
homogeneous space
0 references
totally geodesic
0 references