Homogeneous spaces and isoparametric hypersurfaces (Q2473595)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Homogeneous spaces and isoparametric hypersurfaces
scientific article

    Statements

    Homogeneous spaces and isoparametric hypersurfaces (English)
    0 references
    0 references
    28 February 2008
    0 references
    An isoparametric hypersurface in a round sphere is a hypersurface with constant principal curvatures. If an isoparametric hypersurface in a sphere has four distinct principal curvatures, then these can arise with at most two different multiplicities \(m_1,m_2\), see [\textit{H. F. Münzner}, ``Isoparametrische Hyperflächen I,'' Math. Ann. 251, 57--71 (1980; Zbl 0417.53030)]. For such \(m_1, m_2\) let \(H(m_1,m_2)\) be the set of real symmetric \((2m_1+m_2)\times(2m_1+m_2)\) matrices endowed with the scalar product given by the trace. The author considers the homogeneous space \(N(m_1,m_2)=\{A\in H(m_1,m_2)\mid \text{ trace}\,A=0, \text{ rank}\,A = 2m_1, A^3=A\}\approx O(2m_1+m_2)/O(m_1)\times O(m_1)\times O(m_2)\) and proves that \(N(m_1,m_2)\) contains a totally geodesic round sphere of dimension \(m_2\).
    0 references
    constant principal curvatures
    0 references
    homogeneous space
    0 references
    totally geodesic
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references